Author: Maunoury, L.
Paper Title Page
TUXZO03 Angular Distribution Measurement of Atoms Evaporated from a Resistive Oven Applied to Ion Beam Production 72
 
  • T. Thuillier, A. Leduc
    LPSC, Grenoble Cedex, France
  • O. Bajeat, A. Leduc, L. Maunoury
    GANIL, Caen, France
 
  A low temperature oven has been developed to produce calcium beam with Electron Cyclotron Resonance Ion Source. The atom flux from the oven has been studied experimentally as a function of the temperature and the angle of emission by means of a quartz microbalance. The absolute flux measurement permitted to derive Antoine’s coefficient for the calcium sample used : A=8.98± 0.07 and B=7787± 110 in standard unit. The angular FWHM of the atom flux distribution is found to be 53.7±7.3 °at 848K. The atom flux hysteresis observed experimentally in several laboratories is explained as follows: at first calcium heating, the evaporation comes from the sample only resulting in a small evaporation rate. once a full calcium layer has formed on the crucible refractory wall, the caclcium evaporation surface includes the crucible’s enhancing dramatically the evaporation rate for a givent temperature. A Monte-Carlo code, developed to reproduce and investigate the oven behaviour as a function of temperature is presented. A discussion on the gas regime in the oven is proposed as a function of its temperature. A fair agreement between experiment and simulation is found.  
slides icon Slides TUXZO03 [4.542 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-TUXZO03  
About • Received ※ 28 September 2020 — Revised ※ 19 February 2021 — Accepted ※ 21 July 2021 — Issue date ※ 16 April 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZZO02 Electron Cyclotron Resonance Ion Source Related Research and Development Work at the Department of Physics, University of Jyväskylä (JYFL) 98
 
  • H.A. Koivisto, B.S. Bhaskar, A. Ikonen, T. Kalvas, S.T. Kosonen, R.J. Kronholm, M.S.P. Marttinen, O.P.I. Timonen, V. Toivanen
    JYFL, Jyväskylä, Finland
  • J. Angot, B.S. Bhaskar, T. Thuillier
    LPSC, Grenoble Cedex, France
  • I. Izotov, V. Skalyga
    IAP/RAS, Nizhny Novgorod, Russia
  • L. Maunoury
    GANIL, Caen, France
  • O.A. Tarvainen
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: The work has received funding from the Academy of Finland under the Academy of Finland Project funding (No. 315855) and from University Grenoble Alps under EMERGENCE-project.
Recent research work of the JYFL ion source team covers multi-diagnostic studies of plasma instabilities, high-resolution plasma optical emission spectroscopy, ion current transient measurements to define the total life-time of a particle in the highly charged plasma. The JYFL team also elaborates the magnetic and technical design of the unconventional ion source named CUBE. The R&D work includes, in addition, the commissioning and operation of the high-performance 18 GHz ECRIS, HIISI. The instability measurements have revealed new information about the parameters affecting the onset of the plasma instabilities and shown that different instability modes exist. The ion-beam transient studies have given information about the cumulative life-time of highly-charged ions convergent with the ion temperatures deduced from the Doppler broadening of emission lines. The CUBE prototype has a minimum-B quadrupole magnetic field topology, similar to ARC-ECRIS, and its all-permanent magnet structure has been optimized for 10 GHz frequency. The CUBE design will be presented along with its commissioning status. The status and operational experience with HIISI will be reported as well.
 
slides icon Slides TUZZO02 [9.553 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-TUZZO02  
About • Received ※ 28 September 2020 — Revised ※ 09 November 2020 — Accepted ※ 03 December 2020 — Issue date ※ 05 May 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZZO01 Role of the 1+ Beam Optics Upstream the SPIRAL1 Charge Breeder 146
 
  • L. Maunoury, S. Damoy, M. Dubois, R. Frigot, S. Hormigos, B. Jacquot, O. Kamalou
    GANIL, Caen, France
 
  The SPIRAL1 charge breeder (SP1CB) is under opera-tion. Radioactive ion beam (RIB) has already been deliv-ered [1] to Physicist for experiments. Charge breeding efficiencies demonstrated high performances for stable ion beams than RIB’s. The beam optics, prior to the injection of the 1+ ions into the SP1CB, is of prime im-portance [2] for obtaining such high efficiencies. Moreo-ver, the intensities of the RIB’s are so low, and indeed difficult to tune the SP1CB. A stable beam having a close B’ is required to find out the set of optic parameters preceding the tuning of the RIB. Hence, it has been de-cided to focus our effort on the control of 1+ beam optics leading to high charge breeding efficiencies whatever the 1+ mass, energy and Target Ion Source System (TISS) used. This contribution will show the strategy undertaken to overcome that problem and the results obtained.
[1] L. Maunoury et al., Proceedings of the 23th Int. Workshop on ECR Ion Sources, Catania, Italy (2018)
[2] A. Annaluru, PhD thesis, Université Caen Normandie (2019)
 
slides icon Slides WEZZO01 [4.375 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-WEZZO01  
About • Received ※ 29 September 2020 — Revised ※ 09 October 2020 — Accepted ※ 03 December 2020 — Issue date ※ 21 January 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZZO02 Contaminants Reduction in ECR Charge Breeders by LNL LPSC GANIL Collaboration 151
 
  • J. Angot, M.A. Baylac, M. Migliore, P. Sole, T. Thuillier
    LPSC, Grenoble Cedex, France
  • A. Galatà
    INFN/LNL, Legnaro (PD), Italy
  • L. Maunoury
    GANIL, Caen, France
 
  Contaminants reduction in Electron Cyclotron Resonance Charge Breeders (ECRCB) is a key point for the future experiments foreseen at LNL and GANIL Isotope Separation On Line (ISOL) facilities. According to the mass separator resolution set downstream the ECRCB, the radioactive ion beam study can be challenged in case of low production rate. An ongoing collaboration between LNL, LPSC and GANIL laboratories aims to improve the beam purity, acting on all the pollutant causes. Comparative experiments will be done at LPSC using different techniques, like covering the plasma chamber wall with liners of different materials. Different configurations of the ECRCB will also be tested, with the enhancement of the efficiency and charge breeding time parameters as additional objectives. A presentation of this program is proposed together with the recent upgrade of the LPSC 1+N+ test bench, with the aim to improve the vacuum quality.  
slides icon Slides WEZZO02 [1.915 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-WEZZO02  
About • Received ※ 29 September 2020 — Revised ※ 01 October 2020 — Accepted ※ 15 October 2020 — Issue date ※ 04 November 2020
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)