A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

dumping

Paper Title Other Keywords Page
WEPP059 Automatic Post-operational Checks for the LHC Beam Dump System kicker, extraction, diagnostics, controls 2653
 
  • E. Gallet, J. Axensalva, V. Baggiolini, E. Carlier, B. Goddard, V. Kain, M. Lamont, N. Magnin, J. A. Uythoven, H. Verhagen
    CERN, Geneva
  In order to ensure the required level of reliability of the LHC beam dump system a series of internal post-operational checks after each dump action must be performed. Several data handling and data analysis systems are required internally and at different levels of the LHC control system. This paper describes the data acquisition and analysis systems deployed for post-operational checks, and describes the experience from the commissioning of the equipment where these systems were used to analyse the dump kicker performance.  
 
WEPP064 Apertures in the LHC Beam Dump System and Beam Losses during Beam Abort extraction, kicker, simulation, vacuum 2665
 
  • T. Kramer, B. Goddard, M. Gyr, A. Koschik, J. A. Uythoven, Th. Weiler
    CERN, Geneva
  The LHC beam dump system is used to dispose accelerated protons and ions in a wide energy range from 450 GeV up to 7 TeV. An abort gap of 3 microseconds is foreseen to avoid sweeping particles through the ring aperture. This paper gives a brief overview of the critical apertures in the extraction region and the two beam dump lines, and presents MAD-X tracking studies made to investigate the impact of particles swept through the aperture due to extraction kicker failures or spurious particles within the abort gap.  
 
WEPP066 Results from the LHC Beam Dump Reliability Run kicker, vacuum, extraction, injection 2671
 
  • J. A. Uythoven, A. Antoine, E. Carlier, F. Castronuovo, L. Ducimetière, E. Gallet, B. Goddard, N. Magnin, H. Verhagen
    CERN, Geneva
  The LHC Beam Dumping System is one of the vital elements of the LHC Machine Protection System and has to operate reliably every time a beam dump request is made. Detailed dependability calculations have been made, resulting in expected rates for the different system failure modes. A 'reliability run' of the system, installed in its final configuration in the LHC, has been made to discover infant mortality problems and to compare the occurrence of the measured failure modes with their calculations.