02 Synchrotron Light Sources and FELs

A16 Energy Recovery Linacs (ERLs)

Paper Title Page
MOPC056 Challenges for Beams in an ERL Extension to CESR 190
 
  • G. Hoffstaetter, I. V. Bazarov, S. A. Belomestnykh, M. G. Billing, G. W. Codner, J. A. Crittenden, B. M. Dunham, M. P. Ehrlichman, M. J. Forster, S. Greenwald, V. O. Kostroun, Y. Li, M. Liepe, C. E. Mayes, H. Padamsee, S. B. Peck, D. H. Rice, D. Sagan, Ch. Spethmann, A. Temnykh, M. Tigner, Y. Xie
    CLASSE, Ithaca
  • D. H. Bilderback, K. Finkelstein, S. M. Gruner
    CHESS, Ithaca, New York
 
  Cornell University is planning to build an Energy-Recovery Linac (ERL) X-ray facility. In this ERL design, a 5 GeV superconducting linear accelerator extends the CESR ring. Currently CESR is used for the Cornell High Energy Synchrotron Source (CHESS). The very small electron-beam emittances would produce an x-ray source that is significantly better than any existing storage-ring light source. However, providing, preserving, and decelerating a beam with such small emittances has many issues. We describe our considerations for challenges such as optics, space charge, dark current, coupler kick, ion accumulation, electron cloud, intra beam scattering, gas scattering, radiation shielding, wake fields including the CSR wake, and beam stabilization.  
MOPC057 R&D Energy Recovery Linac at Brookhaven National Laboratory 193
 
  • V. Litvinenko, D. Beavis, I. Ben-Zvi, M. Blaskiewicz, A. Burrill, R. Calaga, P. Cameron, X. Chang, K. A. Drees, G. Ganetis, D. M. Gassner, H. Hahn, L. R. Hammons, A. Hershcovitch, H.-C. Hseuh, A. K. Jain, A. Kayran, J. Kewisch, R. F. Lambiase, D. L. Lederle, G. J. Mahler, G. T. McIntyre, W. Meng, T. C. Nehring, B. Oerter, C. Pai, D. Pate, D. Phillips, E. Pozdeyev, T. Rao, J. Reich, T. Roser, T. Russo, K. Smith, J. E. Tuozzolo, D. Weiss, N. Williams, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • H. Bluem, M. D. Cole, A. J. Favale, D. Holmes, J. Rathke, T. Schultheiss
    AES, Medford, NY
  • J. R. Delayen, L. W. Funk, H. L. Phillips, J. P. Preble
    Jefferson Lab, Newport News, Virginia
 
  Collider Accelerator Department at BNL is in the final stages of developing the 20-MeV R&D energy recovery linac with super-conducting 2.5 MeV RF gun and single-mode super-conducting 5-cell RF linac. This unique facility aims to address many outstanding questions relevant for high current (up to 0.5 A of average current), high brightness energy-recovery linacs with novel Zigzag-type merger. We present the performance of the R&D ERL elements and detailed commissioning plan.  
MOPC058 ALICE (ERLP) Injector Design 196
 
  • B. D. Muratori, Y. M. Saveliev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  In this paper we look at how the ALICE (formerly ERLP) injector has been re-designed to meet more realistic criteria from the previous design. A key component of ALICE is the high brightness injector. The ALICE injector consists of a DC photocathode gun generating 80 pC electron bunches at 350 keV. These bunches are then matched into a booster cavity which accelerates them to an energy of 8.35 MeV. In order to do this, two solenoids and a single-cell buncher cavity are used, together with off-crest injection into the first booster cavity, where the beam is still far from being relativistic. The performance of the injector has been studied using the particle tracking code ASTRA.  
MOPC059 BBU Limitations for ERLs 199
 
  • E. Wooldridge, C. D. Beard, P. A. McIntosh, B. D. Muratori, S. L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  The BBU threshold in ERLs is a limitation on the maximum beam current due to the interaction of the electron bunches and the Higher Order Modes (HOMs) contained within the RF cavities. Several factors are involved in determining the threshold current; from the cavity the Q, R/Q and degeneracy of the modes all play an important part. From the beam transport the values of the lattice functions α, β and μ have an effect. We will discuss the limits on these variables to provide a BBU current threshold greater than 100 mA for a multiple cavity machine and what will be required to provide higher currents. Also three different cavity profiles were investigated with the aim of reducing the BBU threshold. The TESLA 9-cell cavity was used as a baseline for comparison against possible 7-cell cavity designs, using the TESLA cell shape for their inner cells. The ends of the 7-cell cavities join to different sized beampipes, with radii of 39 mm and 54 mm, to allow the most of the HOMs to propagate to a broadband HOM absorber. Two different beampipe to cavity to transitions were investigated. The optimised 7-cell cavity will be shown to provide an increase in the BBU threshold.  
MOPC060 Transverse Resistive-wall Wake of a Round Pipe with Finite Thickness and its Effect on the ERL Multi-bunch Beam 202
 
  • N. Nakamura
    ISSP/SRL, Chiba
 
  We already started to study the effect of resistive-wall wake on the multi-bunch beam in an ERL (energy recovery linac)-based light source*, because resistive-wall beam breakup(RWBBU) could be caused by the cumulative transverse wake generated by interaction between the resistive vacuum pipe and the intense multi-bunch beam. However the resistive-wall wake function of a round pipe used so far for studying the RWBBU was valid only in a limited time range and improper to the RWBBU simulation for a longer time period. Therefore we analytically derived an exact expression of resistive-wall impedance of a round pipe with finite thickness over all the frequency range and numerically calculated the resistive-wall wake functions of several different pipes from the exact impedance expression. The calculated wake functions enabled us to study and simulate the beam behavior in an ERL made of the pipes accurately. We will present the transverse resistive-wall wake of a round pipe with finite thickness and its effect on the ERL multi-bunch beam.

*N. Nakamura et al., Proceedings of PAC07, Albuquerque, June 2007, pp. 1010-1012.

 
MOPC061 Progress in R&D Efforts on the Energy Recovery Linac in Japan 205
 
  • S. Sakanaka, T. A. Agoh, A. Enomoto, S. Fukuda, K. Furukawa, T. Furuya, K. Haga, K. Harada, S. Hiramatsu, T. Honda, Y. Honda, K. Hosoyama, M. Izawa, E. Kako, T. Kasuga, H. Kawata, M. Kikuchi, H. Kobayakawa, Y. Kobayashi, T. Matsumoto, S. Michizono, T. Mitsuhashi, T. Miura, T. Miyajima, T. Muto, S. Nagahashi, T. Naito, T. Nogami, S. Noguchi, T. Obina, S. Ohsawa, T. Ozaki, H. Sasaki, S. Sasaki, K. Satoh, M. Satoh, M. Shimada, T. Shioya, T. Shishido, T. Suwada, T. Takahashi, Y. Tanimoto, M. Tawada, M. Tobiyama, K. Tsuchiya, T. Uchiyama, K. Umemori, S. Yamamoto
    KEK, Ibaraki
  • R. Hajima, H. Iijima, N. Kikuzawa, E. J. Minehara, R. Nagai, N. Nishimori, M. Sawamura
    JAEA/ERL, Ibaraki
  • H. Hanaki
    JASRI/SPring-8, Hyogo-ken
  • A. Ishii, I. Ito, T. Kawasaki, H. Kudo, N. Nakamura, H. Sakai, S. Shibuya, K. Shinoe, T. Shiraga, H. Takaki
    ISSP/SRL, Chiba
  • M. Katoh
    UVSOR, Okazaki
  • Y. Kobayashi, K. Torizuka, D. Yoshitomi
    AIST, Tsukuba
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
 
  The future synchrotron light sources, based on the energy recovery linacs (ERL), are expected to be capable of producing super-brilliant and/or ultra-short pulses of synchrotron radiation. The ERL-based light sources are under development at such institutes as the Cornell University, the Daresbury Laboratory, the Advanced Photon Source, and KEK/JAEA. The Japanese collaboration team, including KEK, JAEA, ISSP, and UVSOR, is working to realize the key technologies for the ERLs. Our R&D program includes the developments of ultra-low-emittance photocathode DC guns and of superconducting cavities, as well as proofs of accelerator-physics issues at a small test ERL (the Compact ERL). A 250-kV, 50-mA photo-cathode DC gun is under construction at JAEA. Two single-cell niobium cavities have been tested under high electric fields at KEK. The conceptual design of the Compact ERL has been carried out. We report recent progress in our R&D efforts.  
MOPC062 Results from ALICE (ERLP) DC Photoinjector Gun Commissioning 208
 
  • Y. M. Saveliev, D. J. Holder, B. D. Muratori, S. L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  The Energy Recovery Linac Prototype (ERLP) DC photoinjector gun has been commissioned and the beam characteristics measured. The gun has demonstrated the nominal ERLP parameters of 350 keV electron energy, 80pC bunch charge and ~140 ps bunch length (at 10% level). The bunch parameters were measured at different bunch charges from 1 pC up to 80 pC. Special attention was given to measurements of the beam transverse emittance (using a movable slit), correlated and uncorrelated energy spread (using an energy spectrometer) and bunch length (using a transverse RF kicker) at each bunch charge. The effect of the 1.3 GHz RF buncher on the bunch length was also investigated. The experimental results are then compared with ASTRA simulations. Experimental results obtained from the investigation of several other issues including the beam characteristics in the presence of field emission from the cathode and in the presence of strong beam halo are also presented and discussed.  
MOPC063 Characterisation of Electron Bunches from ALICE (ERLP) DC Photoinjector Gun at Two Different Laser Pulse Lengths 211
 
  • Y. M. Saveliev, S. P. Jamison, L. B. Jones, B. D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  In high-voltage DC photoinjector guns, the laser pulse duration affects the electron bunch characteristics and therefore is an important subject for experimental investigation and in the optimisation of the operation of the gun. Initial experimental study of this effect has been conducted using the Energy Recovery Linac Prototype (ERLP) photoinjector. During the commissioning of its DC photoinjector gun, the electron bunch parameters were measured at two laser pulse durations, ~7ps and ~28ps FWHM. The shorter laser pulse is the intrinsic output of the laser, while the longer pulse was produced with the use of a pulse stacker. The electron bunch parameters that were measured included transverse emittance, correlated and uncorrelated energy spread and bunch length. The experimental results and their comparison with computer simulations are presented and discussed.  
MOPC064 Beam Losses Due to Intra-Beam and Residual Gas Scattering for Cornell's Energy Recovery Linac 214
 
  • A. Temnykh
    Cornell University, Department of Physics, Ithaca, New York
  • M. P. Ehrlichman, G. Hoffstaetter
    CLASSE, Ithaca
 
  In this paper we analyze particle loss rates in Cornell's x-ray Energy Recovery Linac. Because of the small beam emittances and high beam intensity, intra-beam scattering (IBS) can be a source of significant particles loss in the horizontal plane. It will result in radiation doses which should be carefully examined for adequate radiation protection. Additionally, scattering on the residual gas (RGS) causes particle losses in the vertical plane. With Mote-Carlo type simulations of the scattering processes and transport matrixes for particle-trajectory propagation we found the beam loss distribution along ERL. It indicated that 99% of the total beam loss will be due to IBS. However, the RGS contribution can not be ignored because it dominates scattering in the vertical plane causing IDs irradiation and damage. For both (IBS and RGS) processes the highest beam losses will occur at the end of deacceleration due to adiabatic anti-damping causing traverse betatron amplitudes to increase. These beamlosses can be consentrated in collimation sections. Knowing RGS beam loss rates at the ID locations, we estimate the ID’s life time and suggest a radiation protection scheme.  
TUOAM02 The Status of the Daresbury Energy Recovery Linac Prototype 1001
 
  • D. J. Holder, P. A. McIntosh, S. L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N. Bliss
    STFC/DL, Daresbury, Warrington, Cheshire
  • A. R. Goulden
    STFC/DL/SRD, Daresbury, Warrington, Cheshire
 
  This paper provides an update on the progress with the building and commissioning of the Energy Recovery Linac Prototype (ERLP). The past year has seen a number of notable achievements as well as a number of obstacles to overcome. The detailed results from the gun commissioning work are described elsewhere at this conference. ERLP is a 35 MeV technology demonstrator being built as part of the UK's R&D programme to develop its next-generation light source (NLS). It is based on a combination of a DC photocathode electron gun, a superconducting injector linac and a main linac operating in energy recovery mode. These drive an IR-FEL, an inverse Compton Back-Scattering (CBS) x-ray source and a terahertz beamline. The priorities for ERLP are to gain experience of operating a photoinjector gun and superconducting linacs; to produce and maintain high-brightness electron beams; to achieve energy recovery from an FEL-disrupted beam; the development of an electro-optic longitudinal profile monitor and to study challenging synchronisation issues. ERLP will also act as an injector for what will be the world's first non-scaling, Fixed-Field Alternating Gradient (FFAG) accelerator called EMMA.  
slides icon Slides