A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Zlobin, A. V.

Paper Title Page
WEPD013 Four-Coil Superconducting Helical Solenoid Model for Muon Beam Cooling 2431
 
  • V. S. Kashikhin, N. Andreev, A. N. Didenko, V. Kashikhin, M. J. Lamm, A. V. Makarov, K. Yonehara, A. V. Zlobin
    Fermilab, Batavia, Illinois
  • R. P. Johnson, S. A. Kahn
    Muons, Inc, Batavia
 
  Novel configurations of superconducting magnets for helical muon beam cooling channels and demonstration experiments are being designed at Fermilab. The magnet system for helical cooling channels has to generate longitudinal solenoidal and transverse helical dipole and helical quadrupole fields. This paper discusses the Helical Solenoid model design and manufacturing of a 0.6 m diameter, 4-coil solenoid prototype to prove the design concept, fabrication technology, and the magnet system performance. Results of magnetic and mechanical designs with the 3D analysis by TOSCA, ANSYS and COMSOL will be presented. The model quench performance and the test setup in the FNAL Vertical Magnet Test Facility cryostat will be discussed.  
WEPD014 Magnets for the MANX 6-D Muon Cooling Demonstration Experiment 2434
 
  • V. S. Kashikhin, N. Andreev, V. Kashikhin, M. J. Lamm, K. Yonehara, A. V. Zlobin
    Fermilab, Batavia, Illinois
  • M. Alsharo'a, R. P. Johnson, S. A. Kahn, T. J. Roberts
    Muons, Inc, Batavia
 
  MANX is a 6-dimensional muon ionization-cooling experiment that has been proposed to Fermilab to demonstrate the use of a helical cooling channel (HCC) for muon beam emittance reduction for future muon colliders and neutrino factories. The HCC for MANX has solenoidal, helical dipole, and helical quadrupole magnetic components, which diminish as the beam loses energy as it slows down in the liquid helium absorber inside the magnet. The proposed magnet system design is comprised of coil rings positioned along a helical path, which will provide the desired solenoidal and helical dipole and quadrupole fields. Additional magnets that provide emittance matching between the HCC and the upstream and downstream spectrometers are also described. The results of a G4Beamline simulation of the beam cooling behavior of the magnet and absorber system will be presented.  
WEPD015 Design Studies of Magnet Systems for Muon Helical Cooling Channels 2437
 
  • V. Kashikhin, V. S. Kashikhin, M. J. Lamm, M. L. Lopes, A. V. Zlobin
    Fermilab, Batavia, Illinois
  • M. Alsharo'a, R. P. Johnson, S. A. Kahn
    Muons, Inc, Batavia
 
  Helical cooling channels consisting of a magnet system with superimposed solenoid, helical dipole and quadrupole fields, and a pressurized gas absorber in the aperture, promise high efficiency in providing 6D muon beam cooling for a future Muon Collider and some other applications. Two alternative designs of the magnet system for the helical cooling channel are being investigated at the present time. The first one is based on a straight, large aperture solenoid with helical dipole and quadrupole coils. The other one is based on a spiral solenoid which generates the main solenoid field and the helical dipole and quadrupole components. Both concepts have been developed and compared for the MANX experiment. In this paper we continue design studies and comparison of these two concepts for the high field sections of a helical cooling channel. The results of magnetic and mechanical analysis as well as the superconductor choice and specifications will be presented and discussed.  
WEPD036 Radiation and Thermal Analysis of Superconducting Quadrupoles in the Interaction Region of Linear Collider 2488
 
  • A. V. Zlobin, A. I. Drozhdin, V. Kashikhin, V. S. Kashikhin, M. L. Lopes, N. V. Mokhov
    Fermilab, Batavia, Illinois
  • A. Seryi
    SLAC, Menlo Park, California
 
  The upcoming and disrupted electron and positron beams in the baseline design of ILC interaction region are focused by compact FD doublets each consisting of two small-aperture superconducting quadrupoles and multipole correctors. These magnets will work in a severe radiation environment generated primarily by incoherent pairs and radiative Bhabhas. This paper analyzes the radial, azimuthal and longitudinal distributions of radiation heat deposition in incoming and disrupted beam doublets. Operation margins of baseline quadrupoles based on NbTi superconductor and direct wind technology as well as alternative designs based on NbTi or Nb3Sn Rutherford cables are calculated and compared. The possibilities of reducing the heat deposition in magnet coils using internal absorbers are discussed.  
WEPD037 Nb3Sn Quadrupoles in the LHC IR Phase I Upgrade 2491
 
  • A. V. Zlobin, J. A. Johnstone, V. Kashikhin, N. V. Mokhov, I. L. Rakhno
    Fermilab, Batavia, Illinois
  • S. Peggs, G. Robert-Demolaize, P. Wanderer, R. de Maria
    BNL, Upton, Long Island, New York
 
  After some years of operation at nominal parameters, the LHC will be upgraded for higher luminosity. At the present time it is planned to perform the IR upgrade in two phases with the target luminosity for Phase I of ~2.5· 1034 cm-2s-1 and up to 1035 cm-2s-1 for Phase II. In Phase I the baseline 70-mm NbTi low-beta quadrupoles will nominally be replaced with larger aperture NbTi magnets and in Phase II with higher performance Nb3Sn magnets. U. S.-LARP is working on the development of large aperture high-performance Nb3Sn magnet technologies for the LHC Phase II luminosity upgrade. Recent progress also suggests the possibility of using Nb3Sn quadrupoles in the Phase I upgrade, improving the luminosity through an early demonstration of Nb3Sn magnet technology in a real accelerator environment. This paper discusses the possible hybrid optics layouts for Phase I upgrades with both NbTi and Nb3Sn quadrupoles, introducing magnet parameters and issues related to using Nb3Sn quadrupoles including magnet length and aperture limitations, field quality, operation margin, etc. Possible transition scenarios to Phase II are also discussed.  
WEPP047 Optics Implications of Implementing Nb3Sn Magnets in the LHC Phase I Upgrade 2626
 
  • J. A. Johnstone, V. Kashikhin, N. V. Mokhov, A. V. Zlobin
    Fermilab, Batavia, Illinois
 
  CERN has encouraged the US-LARP collaboration to participate in Phase I of the LHC luminosity upgrade by analyzing the benefits gained by using Nb3Sn technology to replace the functionality of select magnets CERN is commited to construct using NbTi magnets. Early studies have shown that the much higher gradients (shorter magnetic lengths) and energy load of Nb3Sn magnets compared to their NbTi counterpars is very favorable – allowing the insertion of additional absorbers between Q1 & Q2, for example. This paper discusses the relative merits of the NbTi and Nb3Sn options.  
MOPP090 Incorporating RF into a Muon Helical Cooling Channel 760
 
  • S. A. Kahn, M. Alsharo'a, R. P. Johnson
    Muons, Inc, Batavia
  • D. R. Broemmelsiek, A. Jansson, V. Kashikhin, V. S. Kashikhin, A. L. Klebaner, G. F. Kuznetsov, G. V. Romanov, A. V. Shemyakin, D. Sun, K. Yonehara, A. V. Zlobin
    Fermilab, Batavia, Illinois
  • L. Thorndahl
    CERN, Geneva
 
  A helical cooling channel (HCC) consisting of a pressurized gas absorber imbedded in a magnetic channel that provides solenoidal, helical dipole and helical quadrupole fields has shown considerable promise in providing six-dimensional cooling for muon beams. The energy lost by muons traversing the gas absorber needs to be replaced by inserting RF cavities into the lattice. Replacing the substantial muon energy losses using RF cavities with reasonable gradients will require a significant fraction of the channel length be devoted to RF. However, to provide the maximum phase space cooling and minimal muon losses, the helical channel should have a short period and length. In this paper we shall examine three approaches to include RF cavities into the HCC lattice:
  1. Use higher frequency cavities that can be placed inside the magnetic channel,
  2. Interleave cavities between magnetic coil rings, and
  3. Place banks of RF cavities between segments of HCC channels.
Each of these approaches has positive and negative features that need to be evaluated in selecting the proper concept for including RF into the HCC system.
 
WEPP153 Status of the MANX Muon Cooling Experiment 2844
 
  • K. Yonehara, D. R. Broemmelsiek, M. Hu, A. Jansson, V. Kashikhin, V. S. Kashikhin, M. J. Lamm, M. L. Lopes, V. D. Shiltsev, V. Yarba, M. Yu, A. V. Zlobin
    Fermilab, Batavia, Illinois
  • R. J. Abrams, M. A.C. Cummings, R. P. Johnson, S. A. Kahn, T. J. Roberts
    Muons, Inc, Batavia
 
  MANX is an experiment to prove that effective six-dimensional (6D) muon beam cooling can be achieved a Helical Cooling Channel (HCC) using ionization-cooling with helical and solenoidal magnets in a novel configuration. The aim is to demonstrate that 6D muon beam cooling is understood well enough to plan intense neutrino factories and high-luminosity muon colliders. The experiment consists of the HCC magnets that envelop a liquid helium energy absorber, upstream and downstream instrumentation to measure the particle or beam parameters before and after cooling, and emittance matching sections between the detectors and the HCC. Studies are presented of the effects of detector resolution and magnetic field errors on the beam cooling measurements.