A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Yano, Y.

Paper Title Page
MOPP029 The First Measurement of Low-loss 9-cell Cavity in a Cryomodule at STF 610
 
  • T. Saeki, M. Akemoto, S. Fukuda, F. Furuta, K. Hara, Y. Higashi, T. Higo, K. Hosoyama, H. Inoue, A. Kabe, H. Katagiri, S. Kazakov, Y. Kojima, H. Matsumoto, T. Matsumoto, S. Michizono, T. Miura, Y. Morozumi, H. Nakai, K. Nakanishi, N. Ohuchi, K. Saito, M. Satoh, T. Takenaka, K. Tsuchiya, H. Yamaoka, Y. Yano
    KEK, Ibaraki
  • T. Kanekiyo
    Hitachi Technologies and Services Co., Ltd., Kandatsu, Tsuchiura
  • J. Y. Zhai
    IHEP Beijing, Beijing
 
  We are constructing Superconducting RF Test Facility (STF) at KEK for the R&D of International Linear Collider (ILC) accelerator. In the beginning of year 2008, we installed one high-gradient Low-Loss (LL) type 9-cell cavity into a cryomodule at STF, where we assembled an input coupler and peripherals with the cavity in a clean room, and the assembled cavity packages were dressed with thermal shields and installed into a cryomodule. At the room-temperature, we performed the processing of capacitive-coupling input-coupler upto the RF power of 250 kW. At the temperature of 4 K, we measured the loaded Q of the cavity and the tuner was tested. At the temperature of 2 K, high-power RF was supplied from a klystron to the cavity and the performance of the cavity packeage was tested. This article presents the results of the first test of the Low-Loss (LL) 9-cell cavity package at 2 K in a cryomodule.  
TUPC052 Beam Phase and RF Fields Monitoring System Using Lock-In Amplifier for RIBF 1173
 
  • R. Koyama, M. K. Fujimaki, N. Fukunishi, M. Hemmi, O. Kamigaito, M. Kase, Y. Kotaka, N. S. Sakamoto, K. Suda, T. Watanabe, K. Yamada, Y. Yano
    RIKEN, Saitama
 
  The accelerator complex of the RIKEN RI Beam Factory (RIBF) consists of two injectors - heavy ion linac (RILAC and CSM) and K78 MeV AVF cyclotron - and four cyclotrons from the upstream, RRC (K540 MeV), fRC (K570 MeV), IRC (K980 MeV), and SRC (K2600 MeV). In such a multi-stage acceleration system, one of the most important factors for stable operation is to maintain the matching of beam-phases between accelerators. However, drifts of beam-phases have been frequently observed, reasons of which might be the fluctuation of RF-fields, variation of magnetic field, and so on. Hence, it is important to monitor beam-phases constantly, and we have developed a monitoring system using the commercial RF lock-in amplifier model SR844 manufactured by Stanford Research Systems. In addition, the system for monitoring the RF-fields has also been developed to investigate its stability and the correlation with beam-phases. The beam-phases at eleven phase probes installed in the beam transport lines and RF-fields of 25 cavities are monitored in a uranium acceleration. In addition, lock-in amplifiers are also used to obtain good isochronous magnetic fields of three cyclotrons in the RIBF.  
MOPD015 Current Status of Development in TETD of High-power Vacuum Microwave Devices 475
 
  • M. Niigaki
    Toshiba Electron Tubes & Devices Co., Ltd, Tokyo
  • K. Hayashi, M. Irikura, M. Sakamoto, H. Taoka
    TETD, Otawara
  • M. Y. Miyake, Y. Okubo, S. Sakamoto, Y. Yano
    Toshiba Electron Tubes & Devices Co., Ltd (TETD), Tochigi
 
  TETD (Toshiba Electron Tubes & Devices Co., LTD.) has been developing a wide variety of klystrons and input couplers in collaboration with some Japanese research institutes. This article presents recent results of the development including a C-band and an S-band pulsed klystrons for SPring-8 Joint Project for XFEL, 1.3-GHz horizontal MBK for DESY and a 1.3-GHz TTF-type input coupler for the European XFEL. As an application to fusion experimental devices, development of a 5-GHz, 500-kW CW klystron for KSTAR and a 170-GHz quasi CW gyrotron for ITER are also presented.  
MOPD042 Design and Testing of the Horizontal Version of the Multi Beam Klystron for European XFEL Project 544
 
  • Y. Yano, M. Y. Miyake, Y. Okubo, S. Sakamoto
    Toshiba Electron Tubes & Devices Co., Ltd (TETD), Tochigi
  • Y. H. Chin
    KEK, Ibaraki
  • K. Hayashi, K. Tetsuka, H. Urakata
    TETD, Otawara
 
  Toshiba Electron Tubes & Devices (TETD) has been developing 10-MW L-band Multi-Beam Klystrons (MBKs) for the European XFEL project and possibly for future linear colliders. In order to allow horizontal installation in the XFEL tunnel, the horizontal version of MBK, MBK E3736H, has been designed, fabricated and tested by TETD. The MBK has six low-perveance beams operated at low voltage of less than 120 kV (for 10MW) and six ring-shaped cavities. In the successful acceptance testing at TETD in August 2007, the MBK achieved an output power of 10.3 MW at the beam voltage of 117 kV and at the RF pulse width of 1.5ms with efficiency of 67%. This test demonstrated that MBK E3736H fulfills all the requirements necessary as the RF power source of the XFEL linac.  
THPP069 Status of the Superconducting Ring Cyclotron at RIKEN RI Beam Factory 3518
 
  • K. Yamada, M. K. Fujimaki, N. Fukunishi, A. Goto, H. Hasebe, K. Ikegami, O. Kamigaito, M. Kase, K. Kumagai, T. Maie, M. Nagase, J. Ohnishi, N. S. Sakamoto, Y. Yano, S. Yokouchi
    RIKEN, Wako, Saitama
  • H. Okuno
    RIKEN/RARF/CC, Saitama
 
  A superconducting ring cyclotron (SRC) was successfully commissioned to work as the final energy booster of the RI beam factory (RIBF) in RIKEN. SRC is the world's first ring cyclotron that uses superconducting magnets, and has the strongest beam bending force among the cyclotrons. It can boost the ion beam energy up to 440 MeV/nucleon for light ions and 350 MeV/nucleon for very heavy ions such as uranium nuclei to produce intense radioactive beams. The ring cyclotron consists of 6 major superconducting sector magnets with a maximum field of 3.8T. The total stored energy is 240MJ, and its overall sizes are 19 m diameter, 8 m height and 8,100 tons. The magnet system assembly was completed in August 2005, and successfully reached the maximum field in November 2005. After magnetic field measurements for two months, the other hardware than the superconducting magnets was installed. The first beam was extracted from SRC on 12/28/2006. From May 2007 we started to supply uranium beams to nuclear scientist to produce RI beams. This talk will describe the milestones that were achieved during the commissioning as well as some of the issues that still need to be resolved.