A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Uythoven, J. A.

Paper Title Page
TUPD003 Upgrading the Fast Extraction Kicker System in SPS LSS6 1437
 
  • M. J. Barnes, L. Ducimetière, B. Goddard, J. A. Uythoven
    CERN, Geneva
 
  A fast extraction system, located in the LSS6 region of the CERN SPS accelerator, transfers 450 GeV/c protons, as well as ions, via the transfer line TI 2 towards the LHC. The system includes three travelling wave kicker magnets, all powered in series, energised by a single Pulse Forming Network (PFN) and terminated by a short circuit. The specification for the system requires a kick flattop of 7800 ns duration with a ripple of not more than ±0.5%. Recent measurements with beam show that the ±0.5% kick specification is achieved over the initial 7100 ns of the kick flattop; however the ripple over 7800 ns is ±0.7%. Electrical measurements have been carried out on each of the three magnets: these have been compared with the beam measurements and the contribution of each magnet to the detailed shape of the flattop kick has been determined. This paper reports the results of measurements and describes the plans to upgrade the system to fully meet the kick specification.  
WEPP059 Automatic Post-operational Checks for the LHC Beam Dump System 2653
 
  • E. Gallet, J. Axensalva, V. Baggiolini, E. Carlier, B. Goddard, V. Kain, M. Lamont, N. Magnin, J. A. Uythoven, H. Verhagen
    CERN, Geneva
 
  In order to ensure the required level of reliability of the LHC beam dump system a series of internal post-operational checks after each dump action must be performed. Several data handling and data analysis systems are required internally and at different levels of the LHC control system. This paper describes the data acquisition and analysis systems deployed for post-operational checks, and describes the experience from the commissioning of the equipment where these systems were used to analyse the dump kicker performance.  
WEPP064 Apertures in the LHC Beam Dump System and Beam Losses during Beam Abort 2665
 
  • T. Kramer, B. Goddard, M. Gyr, A. Koschik, J. A. Uythoven, Th. Weiler
    CERN, Geneva
 
  The LHC beam dump system is used to dispose accelerated protons and ions in a wide energy range from 450 GeV up to 7 TeV. An abort gap of 3 microseconds is foreseen to avoid sweeping particles through the ring aperture. This paper gives a brief overview of the critical apertures in the extraction region and the two beam dump lines, and presents MAD-X tracking studies made to investigate the impact of particles swept through the aperture due to extraction kicker failures or spurious particles within the abort gap.  
WEPP065 Beam Commissioning of the SPS-to-LHC Transfer Line TI 2 2668
 
  • J. A. Uythoven, G. Arduini, R. W. Assmann, N. Gilbert, B. Goddard, V. Kain, A. Koschik, T. Kramer, M. Lamont, V. Mertens, S. Redaelli, J. Wenninger
    CERN, Geneva
 
  The transfer line for the LHC Ring 1 was successfully commissioned with beam in the autumn of 2007. After extraction from the SPS accelerator and about 2.7 km of new transfer line, the beam arrived at the temporarily installed beam dump, about 50 m before the start of the LHC tunnel, without the need of any beam threading. This paper gives an overview of the hardware commissioning period and the actual beam tests carried out. It summarises the results of the beam test optics measurements and the performance of the installed hardware.  
WEPP066 Results from the LHC Beam Dump Reliability Run 2671
 
  • J. A. Uythoven, A. Antoine, E. Carlier, F. Castronuovo, L. Ducimetière, E. Gallet, B. Goddard, N. Magnin, H. Verhagen
    CERN, Geneva
 
  The LHC Beam Dumping System is one of the vital elements of the LHC Machine Protection System and has to operate reliably every time a beam dump request is made. Detailed dependability calculations have been made, resulting in expected rates for the different system failure modes. A 'reliability run' of the system, installed in its final configuration in the LHC, has been made to discover infant mortality problems and to compare the occurrence of the measured failure modes with their calculations.