Paper | Title | Page |
---|---|---|
MOPP070 | Construction of a Full Scale Superconducting Undulator Module for the International Linear Collider Positron Source | 709 |
|
||
The positron source for the ILC is dependent upon a >200m long undulator to generate a high flux of multi-MeV photons. The undulator system is broken down into a series of 4m cryomodules, which each contain two superconducting helical undulators. Following a dedicated R&D phase and the construction and measurement of a number of short prototypes a full scale cryomodule has now been completed for the first time. This paper reports on the design, manufacture, and test results of this cryomodule. | ||
WEOBG03 | The Design of the Positron Source for the International Linear Collider | 1915 |
|
||
The high luminosity requirements and the option of a polarized positron beam present a great challenge for the positron source of a future linear collider. This paper provides a comprehensive overview of the latest proposed design for the baseline positron source of the International Linear Collider. We report on recent progress and results concerning the main components of the source: including the undulator, collimators, capture optics, and target. | ||
![]() |
Slides | |
MOPP008 | Design of the Photon Collimators for the ILC Positron Helical Undulator | 565 |
|
||
A number of photon collimators are placed inside the helical undulator to protect the cold surfaces of the vacuum vessel from being hit by the photons and thus achieving the baseline pressure requirement. Computer simulations were run in order to determine the energy deposition and instantaneous temperature rise in these collimators and various material candidates were studied. This paper presents the status of the simulation. | ||
MOPP024 | Depolarization and Beam-beam Effects at the Linear Collider | 598 |
|
||
The clean environment at the interaction point of a lepton linear collider allows high-precision measurements for physics analyses. In order to exploit this potential, precise knowledge about the polarization state of the beams is also required. In this paper we concentrate on depolarization effects caused by the intense beam-beam interaction, which is expected to be the dominant source of depolarization. Higher-order effects, as well as critical analyses of the theoretical assumptions used in the past and theoretical improvements in the derivation of suitable equations, are given. Updates on existing simulation programs are reported. Numerical results for the design of the International Linear Collider (ILC) are discussed. | ||
MOPP072 | A Study of Mechanical and Magnetic Issues for a Prototype Positron Source Target | 715 |
|
||
In order to construct a high yield, positron source that can meet the intensity requirements of future facilities, a robust conversion target is needed. One solution is to use a rotating titanium alloy wheel upon which a beam of photons is incident. The efficiency of capturing the resulting positrons can be optimised by immersing this system in a magnetic field. As described elsewhere*, a prototype of such a target has been built at Daresbury Laboratory, to investigate the mechanical challenges associated with its construction and to study the magnetic effects that the wheel will experience. In this paper, calibration of the instrumentation, the data acquisition system and the initial results from operating the wheel in a strong magnetic field are described. Such phenomena as the eddy current heating experienced by the wheel are measured and compared to results from modelling codes. Vibrational issues surrounding the wheel and supporting structure at various speeds are studied.
*ID: 3894 A Prototype Target Wheel for the ILC Positron Source |