

The Design of the Positron Source for the International Linear Collider

Jim Clarke, ASTeC, Daresbury Laboratory

EPAC 2008, Genoa

23rd to 27th June, 2008

- The ILC is a proposed electron-positron collider
- Both beams have maximum energy 250 GeV
- Total length of facility ~35 km
- Peak Luminosity 2 x 10³⁴ cm⁻²s⁻¹

ASTEC. Positron Source Requirements Accelerator Science and Technology Centre

- The ILC positron source is much more demanding than any other positron source yet built
- Requires ~1000 times more positrons per macropulse than the SLC
- Each bunch must contain 2 x 10¹⁰ positrons
 (3.2 nC)
- 2625 bunches per macropulse @ 5Hz
- Additionally, must have upgrade path to provide polarized positrons with polarization ~60%

ASTEC Possible Solutions

- Three possible solutions have been proposed:
 - → Electrons into a target ('conventional')
 - → High energy photons into a target
 - Gammas generated by an Undulator
 - Gammas generated by Compton Scattering
- All three options have been studied and the advantages and disadvantages compared
- When the baseline was established for the ILC in 2005 the Undulator-based source was selected as it was judged to be the *lowest risk option*

ASTEC Positron Source Layout

- 10MeV+ photon beam generated in helical undulator by 150 GeV electrons
- Photon beam travels ~400 m beyond undulator and then generates e⁺e⁻ pairs in titanium alloy target
- Positrons captured and accelerated to 125 MeV
- Any electrons and remaining photons are then separated and dumped
- Positrons further accelerated to 400 MeV and transported for ~5km
- Accelerated to 5 GeV and injected into Damping Ring

ASTEC. E166 – Proof of Principle

- Experiment at SLAC (E166 in 2005) to demonstrate feasibility of this technique
- Successfully generated (polarized) positrons in good agreement with simulations

46.6 GeV electrons 1m long undulator, 0.9mm aperture, $\lambda_u = 2.54$ mm Tungsten target

ASTec. The Undulator

- To generate the photons with a high enough energy (>10MeV) need to use short period, high field, undulator
- For sufficient positrons undulator must be ~200m
- Short period, high field, only possible with narrow aperture:
 - → Resistive wall effects
 - Vessel surface roughness effects
 - Synchrotron radiation power problems
 - Generating a vacuum with difficult aspect ratio
 - Mechanical tolerances
 - Manufacturing issues
- Superconducting technology solution chosen after 'competition' with permanent magnet

D.J. Scott et al, PR-STAB, 10, 032401 (2007).

ASTEC Undulator Details

- Several short prototypes have been tested
- Focus now on design, manufacture and testing of a full cryomodule
- Daresbury & Rutherford Appleton Laboratories are jointly building a full scale 4m undulator module
- Cornell have had a similar program of building short prototypes and intended to build a full cryomodule

Undulator Parameters	Symbol	Value	Units
Undulator period	λ	1.15	cm
Undulator strength	Κ	0.92	
Undulator type		helical	
Active undulator length	L_u	147	m
Field on axis	В	0.86	Т
Beam aperture		5.85	$\mathbf{m}\mathbf{m}$
Photon energy $(1^{st} \text{ harmonic cutoff})$	E_{c10}	10.06	${\rm MeV}$
Photon beam power	P_{γ}	131	kW

ASTec. Undulator Cryomodules

Diameter of cryostat~10 cm (4") Similar schemes developed by both groups

S Carr, RAL

(ASTEC. 1.75m Undulator Fabrication

Winding

Potted and in one half of steel yoke

Complete magnet

ASTEC. 4m Cryomodule Fabrication

Heat Shield

Both long undulators have **exceeded the design current** (216 A) by ~40%.

The two nominally identical magnets have quite different behaviours – the reason is **not understood.**

ASTec. The Target

- Several materials have been considered for the conversion target
- Titanium alloy selected as has greatest safety margin
- Need to *rotate* target to reduce local radiation damage and thermal effects (1m diameter selected)
- Positron capture enhanced by magnetic field but eddy current effects limit field level
- Rim & spokes not solid disk to help mitigate these eddy current effects

Target Parameters	Symbol	Value	Units
Target material		Ti-6%Al-4%V	
Target thickness	L_t	0.4 / 1.4	r.l. / cm
Target power adsorption		8	%
Incident spot size on target	σ_i	> 1.7	mm, rms

Experiment initiated at Cockcroft Institute/Daresbury Laboratory to monitor *eddy current* effects and *mechanical stability* of full size wheel at design velocity

ASTEC. Cockcroft Institute Prototype

Accelerator Science and Technology Centre

Experiment will start when personnel guards are in place

Should be completed by end of 2008

ASTEC. Target Activation

- Equivalent dose rate calculated after 5000 hours of operation at 1m from the source
- Remote handling required so can exchange target modules rapidly
- No intention to make in-situ repairs of the target

A. Ushakov, MOPP077

Capturing the Positrons

- If a linac is placed directly after the target then
 ~10% of the positrons are captured
- Using an appropriate magnetic field can enhance the capture significantly
 - → Simple solenoid (QWT, no field on target) ~15%
 - → Flux concentrator ~21%
 - → Lithium lens ~40%

- Flux concentrator is an *established* technique
- Needs to be scaled up from µs to ms pulse lengths
- Further study needed to prove feasibility
- Would need a prototype
- Presently assumed solution

ASTeC. Lithium Lens Capture System

- Current flows co-linearly with positrons
- Induced magnetic field gives focussing
- Lithium will be liquid with flow of ~1m/s
- Capture up to ~40% of positrons
- Would also need *prototype*
- Modest investment needed now for significant savings overall Li in Li out

- Concerns mainly about survivability of windows
- Radiation damage
- Thermal shock & cycling
- Cavitation of the lithium

ASTEC. Source Modelling

- Extensive modelling of the source has been carried out by several groups
- Used for global optimisation of undulator, target, and capture section parameters
- Yield simulations include undulator, collimation, target, capture magnet, and linacs
- Modelling of *polarisation* of positrons also included

(ASTEC. Undulator Power Calculations)

Undulator is **cold bore** (4K) and will **quench itself** unless (low power) **collimators** are included in the cryomodule string

Full ~200m undulator made up of many ~2m sections, each treated separately

Power per metre without collimators >10W/m. Limit of cryosystem is ~1 W/m.

Inclusion of 5mm diameter **photon collimators (shown in red) in room** temperature sections reduces power level to ~0.05 W/m

ASTEC. Wakefield Studies

Energy spread increase of electron beam for 200m long undulator at room and cryogenic temperatures for alternative vessel materials due to **resistive wall impedance**

Energy spread increase of electron beam at room (solid) and cryogenic (dashed) temperatures for copper vessel due to **resistive wall impedance**

Surface roughness necessary to produce an energy spread of 0.005% (nominal for ILC is 0.05%) for different vessel radii and form factors.

Mean **emittance increase** due to **geometric wakes** of misaligned taper sections and photon collimators in undulator section.

D J Scott

- ASTEC. Positron Polarization
- Helical undulator generates *circularly polarised light*
- This then produces longitudinally *polarized positrons*
- Selecting photons near axis maximises polarisation rate
- Baseline source generates ~30% polarization (already very useful!)
- Upgrade by *collimating photon beam* to select the appropriate photons and by *lengthening undulator* to make up for subsequent loss in intensity
- Can readily achieve ~60% polarisation

ASTEC. Summary

- The ILC positron source requires ~1000 times more positrons per macropulse than ever before achieved
- The positrons are generated by >10MeV photons which are produced by a 150GeV electron beam in a long superconducting undulator
- The upgrade to a polarized positron source is simple and straightforward
- A full scale undulator module has been successfully fabricated
- A conversion target eddy current experiment is in progress
- Other critical subsystems will need prototyping in the future eg Lithium lens & Flux concentrator (*some investment needed!*)
- All simulations show the source to be feasible and any potential detrimental effects to be small
- Detailed engineering and integration of the full source has now been initiated

ASTEC. Thanks To The Team !

- I.R. Bailey
- D.P. Barber
- E. Baynham
- V. Bharadwaj
- T.W. Bradshaw
- A. Brummitt
- A. Bungau
- F.S. Carr
- N.A. Collomb
- J. Dainton
- R. Dollan
- W. Gai

- J. Gronberg A.F. Hartin S. Hesselbach K.M. Hock Y. Ivanyushenkov L.J. Jenner K. Laihem A. Lintern W. Liu T. Lohse **O.B.** Malyshev L.I. Malysheva
- A.A. Mikhailichenko **G.A. Moortgat-Pick** W.T. Piggott S. Riemann J. Rochford **N.C. Ryder** A. Schaelicke **D.J. Scott** J.C. Sheppard A. Ushakov L. Zang

UNIVERSITY OF

SI AC

