A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Okabe, K.

Paper Title Page
TUOBM04 FFAGs for the ERIT and ADS Projects at KURRI 1013
 
  • T. Uesugi, H. Horii, Y. Kuriyama, K. Mishima, Y. Mori, A. Osanai, T. Planche, S. Shiroya, M. Tanigaki, H. Yoshino
    KURRI, Osaka
  • M. Inoue
    SLLS, Shiga
  • Y. Ishi
    Mitsubishi Electric Corp, Energy & Public Infrastructure Systems Center, Kobe
  • M. Muto
    FFAG DDS Research Organization, Tokyo
  • K. Okabe, I. Sakai
    University of Fukui, Faculty of Engineering, Fului
 
  A chain of FFAG proton accelerator have been under construction at Kyoto University Research Reactor Institute (KURRI), Osaka, for the study of accelerator driven system (ADS) since 2004. The accelerator is a cascade type and composed of three different FFAG rings: injector, booster and main ring. The maximum energy of the main ring is 150 MeV for proton. The beam was successfully accelerated and extracted from the booster in June of 2006 and the beam commissioning of the main ring has started since then. Recently the beam has been successfully injected into the main ring.  
slides icon Slides  
THPP067 An Intense Neutron Source with Emittance Recovery Internal Target (ERIT) Using Ionization Cooling 3512
 
  • Y. Mori
    KURRI, Osaka
  • M. Muto
    FFAG DDS Research Organization, Tokyo
  • K. Okabe
    University of Fukui, Faculty of Engineering, Fului
 
  An intense neutron source with emittance recovery internal target (ERIT) using ionization cooler ring has been developed at Kyoto University Research Reactor Institute (KURRI) for boron neutron capture therapy (BNCT). The neutron source consists of a 11MeV H- linac and a FFAG storage ring. A thin (10micron) Be target is placed in the ring. In order to reduce an emittance growth caused by multiple scattering at the target, an ionization cooling with a low frequency and high voltage RF cavity is utilized. The beam is expected to be survived for more than 500 turns in the ring, which can increase beam efficiency largely to reduce an injected beam current.