A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Fukunishi, N.

Paper Title Page
TUPC052 Beam Phase and RF Fields Monitoring System Using Lock-In Amplifier for RIBF 1173
 
  • R. Koyama, M. K. Fujimaki, N. Fukunishi, M. Hemmi, O. Kamigaito, M. Kase, Y. Kotaka, N. S. Sakamoto, K. Suda, T. Watanabe, K. Yamada, Y. Yano
    RIKEN, Saitama
 
  The accelerator complex of the RIKEN RI Beam Factory (RIBF) consists of two injectors - heavy ion linac (RILAC and CSM) and K78 MeV AVF cyclotron - and four cyclotrons from the upstream, RRC (K540 MeV), fRC (K570 MeV), IRC (K980 MeV), and SRC (K2600 MeV). In such a multi-stage acceleration system, one of the most important factors for stable operation is to maintain the matching of beam-phases between accelerators. However, drifts of beam-phases have been frequently observed, reasons of which might be the fluctuation of RF-fields, variation of magnetic field, and so on. Hence, it is important to monitor beam-phases constantly, and we have developed a monitoring system using the commercial RF lock-in amplifier model SR844 manufactured by Stanford Research Systems. In addition, the system for monitoring the RF-fields has also been developed to investigate its stability and the correlation with beam-phases. The beam-phases at eleven phase probes installed in the beam transport lines and RF-fields of 25 cavities are monitored in a uranium acceleration. In addition, lock-in amplifiers are also used to obtain good isochronous magnetic fields of three cyclotrons in the RIBF.  
THPP069 Status of the Superconducting Ring Cyclotron at RIKEN RI Beam Factory 3518
 
  • K. Yamada, M. K. Fujimaki, N. Fukunishi, A. Goto, H. Hasebe, K. Ikegami, O. Kamigaito, M. Kase, K. Kumagai, T. Maie, M. Nagase, J. Ohnishi, N. S. Sakamoto, Y. Yano, S. Yokouchi
    RIKEN, Wako, Saitama
  • H. Okuno
    RIKEN/RARF/CC, Saitama
 
  A superconducting ring cyclotron (SRC) was successfully commissioned to work as the final energy booster of the RI beam factory (RIBF) in RIKEN. SRC is the world's first ring cyclotron that uses superconducting magnets, and has the strongest beam bending force among the cyclotrons. It can boost the ion beam energy up to 440 MeV/nucleon for light ions and 350 MeV/nucleon for very heavy ions such as uranium nuclei to produce intense radioactive beams. The ring cyclotron consists of 6 major superconducting sector magnets with a maximum field of 3.8T. The total stored energy is 240MJ, and its overall sizes are 19 m diameter, 8 m height and 8,100 tons. The magnet system assembly was completed in August 2005, and successfully reached the maximum field in November 2005. After magnetic field measurements for two months, the other hardware than the superconducting magnets was installed. The first beam was extracted from SRC on 12/28/2006. From May 2007 we started to supply uranium beams to nuclear scientist to produce RI beams. This talk will describe the milestones that were achieved during the commissioning as well as some of the issues that still need to be resolved.