A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Wuensch, W.

 
Paper Title Page
MOPLS103 A High-gradient Test of a 30 GHz Molybdenum-iris Structure 801
 
  • W. Wuensch, C. Achard, H.-H. Braun, G. Carron, R. Corsini, S. Doebert, R. Fandos, A. Grudiev, E. Jensen, T. Ramsvik, J.A. Rodriguez, J.P.H. Sladen, I. Syratchev, M. Taborelli, F. Tecker, P. Urschütz, I. Wilson
    CERN, Geneva
  • H. Aksakal
    Ankara University, Faculty of Sciences, Tandogan/Ankara
  • Ö.M. Mete
    Ankara University, Faculty of Engineering, Tandogan, Ankara
 
  The CLIC study is investigating a number of different materials as part of an effort to find ways to increase achievable accelerating gradient. So far, a series of rf tests have been made with a set of identical-geometry structures: a tungsten-iris 30 GHz structure, a molybdenum-iris 30 GHz structure and a scaled molybdenum-iris X-band structure. A second molybdenum-iris 30 GHz structure of the same geometry has now been tested in CTF3 with pulse lengths up to 350 ns. The new results are presented and compared to those of the previous structures to determine dependencies of quantities such as accelerating gradient, material, frequency, pulse length, power flow, conditioning rate and breakdown rate.  
MOPLS128 Status of the Fatigue Studies of the CLIC Accelerating Structures 858
 
  • S.T. Heikkinen, S.T. Heikkinen
    HUT, Espoo
  • S. Calatroni, H. Neupert, W. Wuensch
    CERN, Geneva
 
  The need for high accelerating gradients for the future Compact Linear Collider imposes considerable constraints on the materials of the accelerating structures. The surfaces exposed to high pulsed RF currents are subjected to cyclic thermal stresses possibly resulting in surface break up by fatigue. Since no fatigue data exists in the literature up to very large numbers of cycles, a comprehensive study has been initiated. Low cycle fatigue data (up to 108 cycles) has been collected by means of a pulsed laser surface heating apparatus. The surface damage has been characterized by SEM observations and roughness measurements. High cycle fatigue data (up to 1011 cycles) at various stress ratios have been collected in high frequency bulk fatigue tests using an ultrasonic apparatus. It is found that the appearance of surface fatigue damage in the laser experiments, and of fatigue cracks in the bulk specimen, happen at similar stress levels for similar numbers of cycles. This allows the two experimental techniques to be connected and to predict the surface damage at a high number of cycles. Up-to-date fatigue data for selected high conductivity, high strength Cu alloys are presented.  
WEOAPA02 Optimum Frequency and Gradient for the CLIC Main Linac 1867
 
  • A. Grudiev, D. Schulte, W. Wuensch
    CERN, Geneva
 
  A novel procedure for the optimization of the operating frequency, the accelerating gradient, and many other parameters of the CLIC main linac is presented. Based on the new accelerating structure design HDS (Hybrid Damped Structure), the optimization procedure takes into account both beam dynamics (BD) and RF constraints. BD constraints are related to emittance growth due to short- and long-range transverse wakefields. RF constraints are related to RF breakdown and pulsed surface heating limitations of the accelerating structure. Interpolation of beam and structure parameters in a wide range allows hundreds of millions of structures to be analyzed. Only those structures which satisfy BD and RF constraints are evaluated further in terms of ratio of luminosity to main linac input power, which is used as the figure of merit. The frequency and gradient have been varied in the range 12-30 GHz and 90-150 MV/m, respectively. It is shown that the optimum frequency varies in the range from 16 to 20 GHz depending on the accelerating gradient and that the optimum gradient is below 100 MV/m and that changing frequency and gradient can double the luminosity for the same main linac input power.  
slides icon Transparencies
WEPLS023 The Two-beam Test-stand in CTF3 2445
 
  • V.G. Ziemann, T. J. C. Ekelof, M. A. Johnson
    UU/ISV, Uppsala
  • H.-H. Braun, S. Doebert, G. Geschonke, J.P.H. Sladen, W. Wuensch
    CERN, Geneva
 
  The acceleration concept for CLIC, based on the two-beam acceleration scheme, where the 30 GHz RF power needed to accelerate the high energy beam is generated by a high-intensity but rather low energy drive beam, will be tested in the two-beam test-stand in CTF3. There RF-structures will be tested at full pulse length. The extreme power levels of up to 640 MW warrant a careful diagnostic system to analyze RF breakdown by observing the effect on both probe- and drive-beam but also the RF signals and secondary effects such as emitted light, vibrations, vacuum, temperatures. We describe the experimental setup and the diagnostic system planned to be installed in CTF3 for 2007.