A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Ruggiero, F.

 
Paper Title Page
MOPLS014 Lifetime Limit from Nuclear Intra-bunch Scattering for High-energy Hadron Beams 565
 
  • F. Zimmermann, H.-H. Braun, F. Ruggiero
    CERN, Geneva
 
  We derive an approximate expression for the nuclear scattering rate inside a bunched hadron beam. Application to the LHC suggests that the loss rate due to nuclear scattering can be significant in high-energy proton or ion storage rings.  
THPCH047 Maps for Electron Clouds: Application to LHC 2889
 
  • T. Demma, S. Petracca
    U. Sannio, Benevento
  • F. Ruggiero, G. Rumolo, F. Zimmermann
    CERN, Geneva
 
  Electron Cloud studies performed so far were based on very heavy computer simulations taking into account photoelectron production, secondary electron emission, electron dynamics, and space charge effects providing a very detailed description of the electron cloud evolution. In a recent paper* it has been shown that, for the typical parameters of RHIC, the bunch-to-bunch evolution of the electron cloud density can be represented by a cubic map. Simulations based on this map formalism are orders of magnitude faster than those based on usual codes. In this communication we show that the map formalism is also reliable in the range of typical LHC parameters, and discuss the dependence of the polynomial map coefficients on the physical parameters affecting the electron cloud (SEY, chamber dimensions, bunch spacing, bunch charge, etc.).

*U. Iriso and S. Peggs. "Maps for Electron Clouds", Phys. Rev. ST-AB 8, 024403, 2005.

 
TUODFI01 The Final Collimation System for the LHC 986
 
  • R.W. Assmann, O. Aberle, G. Bellodi, A. Bertarelli, C.B. Bracco, H.-H. Braun, M. Brugger, S. Calatroni, R. Chamizo, A. Dallocchio, B. Dehning, A. Ferrari, P. Gander, A. Grudiev, E.B. Holzer, J.-B. Jeanneret, J.M. Jimenez, M. Jonker, Y. Kadi, K. Kershaw, J. Lendaro, J. Lettry, R. Losito, M. Magistris, A.M. Masi, M. Mayer, E. Métral, R. Perret, C. Rathjen, S. Redaelli, G. Robert-Demolaize, S. Roesler, F. Ruggiero, M. Santana-Leitner, P. Sievers, M. Sobczak, E. Tsoulou, V. Vlachoudis, Th. Weiler
    CERN, Geneva
  • I. Baishev, I.L. Kurochkin
    IHEP Protvino, Protvino, Moscow Region
 
  The LHC collimation system has been re-designed over the last three years in order to address the unprecedented challenges that are faced with the 360 MJ beams at 7 TeV. The layout of the LHC has now been fixed and a final approach for collimation and cleaning has been adopted. In total 132 collimator locations have been reserved in the two LHC rings and can be installed in a phased approach. Ninety collimators of five different types will be available for initial beam operation. The system has been fully optimized for avoiding quenches of super-conducting magnets during beam losses and for sufficient survival of beamline components against radioactive dose. The phased approach for LHC collimation is described, the various collimators and their functionalities are explained, and the expected system performance is summarized.  
slides icon Transparencies
WEPCH141 Accelerator Physics Code Web Repository 2254
 
  • F. Zimmermann, R. Basset, E. Benedetto, U. Dorda, M. Giovannozzi, Y. Papaphilippou, T. Pieloni, F. Ruggiero, G. Rumolo, F. Schmidt, E. Todesco
    CERN, Geneva
  • D.T. Abell
    Tech-X, Boulder, Colorado
  • R. Bartolini
    Diamond, Oxfordshire
  • O. Boine-Frankenheim, G. Franchetti, I. Hofmann
    GSI, Darmstadt
  • Y. Cai, M.T.F. Pivi
    SLAC, Menlo Park, California
  • Y.H. Chin, K. Ohmi, K. Oide
    KEK, Ibaraki
  • S.M. Cousineau, V.V. Danilov, J.A. Holmes, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee
  • L. Farvacque
    ESRF, Grenoble
  • A. Friedman
    LLNL, Livermore, California
  • M.A. Furman, D.P. Grote, J. Qiang, G.L. Sabbi, P.A. Seidl, J.-L. Vay
    LBNL, Berkeley, California
  • D. Kaltchev
    TRIUMF, Vancouver
  • T.C. Katsouleas
    USC, Los Angeles, California
  • E.-S. Kim
    PAL, Pohang, Kyungbuk
  • S. Machida
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • J. Payet
    CEA, Gif-sur-Yvette
  • T. Sen
    Fermilab, Batavia, Illinois
  • J. Wei
    BNL, Upton, Long Island, New York
  • B. Zotter
    Honorary CERN Staff Member, Grand-Saconnex
 
  In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this web repository, illustrate its usage, and discuss our future plans.