A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Parkhomchuk, V.V.

Paper Title Page
TUPLS068 LEIR Electron Cooler Status 1651
 
  • G. Tranquille, V. Prieto, R. Sautier
    CERN, Geneva
  • A.V. Bubley, V.V. Parkhomchuk
    BINP SB RAS, Novosibirsk
 
  The electron cooler for LEIR is the first of a new generation of coolers being commissioned for fast phase space cooling of ion beams in storage rings. It is a state-of-the-art cooler incorporating all the recent developments in electron cooling technology (adiabatic expansion, electrostatic bend, variable density electron beam…) and is designed to deliver up to 600 mA of electron current for the cooling and stacking of Pb54+ ions in the frame of the ions for LHC project. In this paper we present our experience with the commissioning of the new device as well as the first results of ion beam cooling with a high-intensity variable-density electron beam.  
TUPLS080 The Proposed 2 MeV Electron Cooler for COSY-Juelich 1684
 
  • J. Dietrich
    FZJ, Jülich
  • V.V. Parkhomchuk
    BINP SB RAS, Novosibirsk
 
  The design, construction and installation of a 2 MeV electron cooling system for COSY-Juelich is proposed to further boost the luminosity even with strong heating effects of high-density internal targets. In addition the design of the 2 MeV electron cooler for COSY is intended to test some new features of the high energy electron cooler for HESR at FAIR/GSI. The design of the 2 MeV electron cooler will be accomplished in cooperation with the Budker Institute of Nuclear Physics in Novosibirsk, Russia. Starting with the boundary conditions of the existing electron cooler at COSY the requirements and a first general scheme of the 2 MeV electron cooler are described.  
WEPCH195 Status of the Russian Accelerator Mass Spectrometer Project 2391
 
  • M. Petrichenkov, N. Alinovsky, A.D. Goncharov, V. Klyuev, A. Kozhemyakin, A. Kryuchkov, V.V. Parkhomchuk, S. Rastigeev, V.B. Reva
    BINP SB RAS, Novosibirsk
 
  The status of the first Russian accelerator mass spectrometer being developed at BINP is described. The scheme of the spectrometer includes two types of ion sources (sputter and gaseous ones), electrostatic tandem accelerator with accelerating voltage up to 2 MV and magnesium vapors stripper and also includes the high-energy and low-energy beam lines with analyzers. The results of the experiments with the ion beams will be given.