A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Franchetti, G.

Paper Title Page
THPCH004 Space Charge Induced Resonance Trapping in High-intensity Synchrotrons 2790
 
  • G. Franchetti, I. Hofmann
    GSI, Darmstadt
 
  With the recent development of high-intensity circular accelerators, the simultaneous presence of space charge and lattice nonlinearities has gained special attention as possible source of beam loss. In this paper we present our understanding of the role of space charge and synchrotron motion as well as chromaticity for trapping of particles into the islands of nonlinear reonances. We show that the three effects combined can lead to significant beam loss, where each individual effect leads to small or negligible loss. We apply our findings to the SIS100 of the FAIR project, where the main source of field nonlinearities stems from the pulsed super-conducting dipoles, and the beam dynamics challenge is an extended storage at the injection flat-bottom, over almost one second, together with a relatively large space charge tune shift.  
THPCH005 Considerations for the High-intensity Working Point of the SIS100 2793
 
  • G. Franchetti, O. Boine-Frankenheim, I. Hofmann, V. Kornilov, P.J. Spiller, J. Stadlmann
    GSI, Darmstadt
 
  In the FAIR project the SIS100 synchrotron is foreseen to provide high-intensity beams of U 28+, including slow extraction to the radioactive beam experimental area, as well as high-intensity p beams for the production of antiprotons. In this paper we discuss the proposal of three different working points, which should serve the different needs: (1) a high intensity working point for U28+; (2) a slow extraction working point (also U28+); (3) a proton operation working point to avoid transition crossing. The challenging beam loss control for all three applications requires a careful account of the effects of space charge, lattice nonlinearities and chromaticity, which will be discussed in detail in this paper. Since tunes are not split by an integer and the injected emittances are different, the Montague stop-band needs to be avoided. Moreover, final bunch compression for the U beam requires a sufficiently small momentum spread, and the risk of transverse resisitive wall instabilities poses further limitations on our choice of working points.  
THPCH006 Scaling Laws for the Montague Resonance 2796
 
  • I. Hofmann, G. Franchetti
    GSI, Darmstadt
 
  The space-charge-driven Montague resonance is a source of emittance coupling in high-intensity accelerators with un-split tunes. Here we present scaling laws for the stop-band widths, growth rates and crossing behavior of this fourth order resonance. Our results on the coupling can be applied to circular machines as well as to linear accelerators. Based on self-consistent coasting beam simulation we show that for slow crossing of the stop-bands a strong directional dependence exists: in one direction the exchange is smooth and reversible, in the other direction it is discontinuous. We also discuss the combined effect of the Montague resonance and linear coupling by skew quadrupoles.  
THPCH018 Resonance Trapping, Halo Formation and Incoherent Emittance Growth due to Electron Cloud 2820
 
  • E. Benedetto, E. Benedetto
    Politecnico di Torino, Torino
  • G. Franchetti
    GSI, Darmstadt
  • G. Rumolo, F. Zimmermann
    CERN, Geneva
 
  The pinched electron cloud introduces a tune shift along the bunch, which together with synchrotron motion, leads to a periodic crossing of resonances. The resonances are excited by the longitudinal distribution of the electron cloud around the storage ring. We benchmark the PIC code HEADTAIL against a simplified weak-strong tracking code based on an analytical field model, obtaining an excellent agreement. The simplified code is then used for exploring the long term evolution of the beam emittance, and for studying more realistic lattice models. Results are presented for the CERN SPS and the LHC.  
WEPCH141 Accelerator Physics Code Web Repository 2254
 
  • F. Zimmermann, R. Basset, E. Benedetto, U. Dorda, M. Giovannozzi, Y. Papaphilippou, T. Pieloni, F. Ruggiero, G. Rumolo, F. Schmidt, E. Todesco
    CERN, Geneva
  • D.T. Abell
    Tech-X, Boulder, Colorado
  • R. Bartolini
    Diamond, Oxfordshire
  • O. Boine-Frankenheim, G. Franchetti, I. Hofmann
    GSI, Darmstadt
  • Y. Cai, M.T.F. Pivi
    SLAC, Menlo Park, California
  • Y.H. Chin, K. Ohmi, K. Oide
    KEK, Ibaraki
  • S.M. Cousineau, V.V. Danilov, J.A. Holmes, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee
  • L. Farvacque
    ESRF, Grenoble
  • A. Friedman
    LLNL, Livermore, California
  • M.A. Furman, D.P. Grote, J. Qiang, G.L. Sabbi, P.A. Seidl, J.-L. Vay
    LBNL, Berkeley, California
  • D. Kaltchev
    TRIUMF, Vancouver
  • T.C. Katsouleas
    USC, Los Angeles, California
  • E.-S. Kim
    PAL, Pohang, Kyungbuk
  • S. Machida
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • J. Payet
    CEA, Gif-sur-Yvette
  • T. Sen
    Fermilab, Batavia, Illinois
  • J. Wei
    BNL, Upton, Long Island, New York
  • B. Zotter
    Honorary CERN Staff Member, Grand-Saconnex
 
  In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this web repository, illustrate its usage, and discuss our future plans.