A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Dowd, R.T.

Paper Title Page
TUPCH003 Diagnostics and Timing at the Australian Synchrotron 995
 
  • M.J. Spencer, S. Banks, M.J. Boland, M. Clift, R.T. Dowd, R. Farnsworth, S. Hunt, G. LeBlanc, M. Mallis, B. Mountford, Y.E. Tan, A. Walsh, K. Zingre
    ASP, Clayton, Victoria
 
  The 3GeV Australian Synchrotron will begin operation in March 2007. This paper outlines the storage ring diagnostics systems and the injection timing system. The diagnostics system includes an optical beamline with streak camera, an x-ray beamline with pinhole array, a diagnostic straight with fast feedback kicker, stripline, direct current current transformer, and a four-fingered scraper. Over the 14 sectors there are 98 beam position monitors and 14 movable beam loss monitors. The timing system is based on a static injection system with the storage ring bucket to be filled targeted by delaying the firing of the electron gun.  
THPCH031 Impedance and Beam Stability Study at the Australian Synchrotron 2844
 
  • R.T. Dowd, M.J. Boland, G. LeBlanc, M.J. Spencer, Y.E. Tan
    ASP, Clayton, Victoria
 
  We present the preliminary results of an impedance study of the Australian Synchrotron storage ring. Beam stability thresholds have been determined and an overall impedance budget set. Broad-band impedance has been evaluted for various components of the vacuum chamber, using both analytical formulae and results from MAFIA simulations. Narrow band resonances have also been investigated, with particular attention paid to higher order modes in the RF cavities and their effect on multi-bunch instabilities.  
THPLS002 X-ray and Optical Diagnostic Beamlines at the Australian Synchrotron Storage Ring 3263
 
  • M.J. Boland, R.T. Dowd, G. LeBlanc, M.J. Spencer, Y.E. Tan, A. Walsh
    ASP, Clayton, Victoria
 
  Two diagnostic beamlines have been designed and constructed for the Australian Synchrotron Storage Ring. One diagnostic beamline is a simple x-ray pinhole camera system, with a BESSY II style pinhole array, designed to measure the beam divergence, size and stability. The second diagnostic beamline uses an optical chicane to extract the visible light from the photon beam and transports it to various instruments. The end-station of the optical diagnostic beamline is equipped with a streak camera, a fast ICCD camera, a CCD camera and a fill pattern monitor. The beamline design and some commissioning measurements are presented.  
THPLS005 Commissioning Results from the Injection System for the Australian Synchrotron Project 3272
 
  • S. Friis-Nielsen, H. Bach, F. Bødker, A. Elkjaer, N. Hauge, J. Kristensen, L.K. Kruse, S.M. Madsen, S.P. Møller
    Danfysik A/S, Jyllinge
  • M.J. Boland, R.T. Dowd, G. LeBlanc, M.J. Spencer, Y.E. Tan
    ASP, Clayton, Victoria
  • N.H. Hertel, J.S. Nielsen
    ISA, Aarhus
 
  Danfysik has built a full-energy turnkey injection system for the Australian Synchrotron. The system consists of a 100 MeV LINAC, a low-energy transfer beamline, a full-energy booster and a high energy transfer beamline. The booster synchrotron will deliver a 3-GeV beam with an emittance of 33 nm. The lattice is designed to have many cells with combined-function magnets (dipole, quadrupole and sextupole fields) in order to reach this very small emittance. The current in single- and multi-bunch mode will be in excess of 0.5 and 5 mA, respectively. The repetition frequency will be 1 Hz. At the time of writing this abstract, the LINAC beam has been injected into the low-energy transfer beamline. The project is on schedule for delivery in April 2006. Results from the commissioning of the system will be presented together with its performance.  
THPLS012 Commissioning of the Australian Synchrotron Injector RF Systems 3293
 
  • C. Piel, K. Dunkel, J. Manolitsas, D. Trompetter, H. Vogel
    ACCEL, Bergisch Gladbach
  • M.J. Boland, R.T. Dowd, G. LeBlanc, M.J. Spencer, Y.E. Tan
    ASP, Clayton, Victoria
 
  On December 16, 2003 the contract for the design, manufacture, installation and commissioning of the turnkey injector system for the Australian Synchrotron Project was awarded to industry. ACCEL Instruments is delivering the turnkey 100MeV linac and the booster RF system. Commissioning of the linac for ASP was performed in December 2005, right after successful commissioning of the Diamond Light Source injection linac*. The 500MHz booster cavity and related low level RF system will be commissioned after installation of the booster is finalised in early 2006. The paper will present design and layout information, as well as commissioning results.

*Commissioning of the Diamond Pre-Injector Linac (this conference).