Author: Yang, G.
Paper Title Page
WEPO010 High Intensity Cyclotron System Integration and Commissioning for Industrialization Application 225
 
  • P.Z. Li, H.R. Cai, S.G. Hou, X.L. Jia, G.F. Pan, G.F. Song, J.F. Wang, G. Yang, H. Zhang, T.J. Zhang
    CIAE, Beijing, People’s Republic of China
 
  Up to 430 µA beam intensity was obtained in 10 MeV CRM cyclotron (CYCIAE-CRM) at China Institute of Atomic Energy (CIAE) in 2010. Whereafter, CIAE built a series of 14 MeV high intensity external ion source cyclotrons for medical isotope application and its relevant research. Compared with research cyclotron facility, cyclotron for industrialization application requires higher level of safety, usability and stability. Therefore, mechanical and electrical system integration and optimum are applied in the cyclotron design and commissioning. Electrical devices of cyclotron, including power supply, RF amplifier and PLC controller, are integrated into four standard industrial shielding cabinets with electromagnetic compatibility (EMC) design to improve electromagnetic interference and operation stability. Besides, earthing system is rearranged in regular laboratory maintenance period to minimize electromagnetic coupling of different signal systems. Based on the previous compact system integration, communication system is integrated into each electrical device as well and could be operated in local and remote mode for the convenience of commissioning. Industrial Ethernet standard PROFINET is adopted as communication protocol to improve the efficiency of protocol interaction towards millisecond level. Regarding RF system, start-up sequence of LLRF is optimized to increase uptime and reliability. The commissioning is also presented in this paper.  
DOI • reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-WEPO010  
About • Received ※ 06 December 2022 — Revised ※ 31 December 2022 — Accepted ※ 09 February 2023 — Issue date ※ 30 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO015 R&D Studies on A 177.6 MHz 1:4 Scale Boat Shape Prototype RF Cavity for the 2 GeV CW FFA 338
 
  • S. Pei, L.L. Guan, Y. Jia, Z.J. Jin, M. Li, J.Y. Liu, G.F. Pan, F. Wang, L. Wang, Y. Wang, G. Yang, Z.G. Yin, S.P. Zhang, T.J. Zhang, X.F. Zhu
    CIAE, Beijing, People’s Republic of China
  • B. Li, S.B. Xia, Y. Xing
    ASIPP, Hefei, People’s Republic of China
 
  Funding: Work supported in part by the National Natural Science Foundation of China under Grant 12135020 and the basic research fund from the Ministry of Finance of China under Grant BRF201901.
A proton circular accelerator complex composed of a 100 MeV separated radial sector cyclotron, an 800 MeV separated spiral sector cyclotron and a 2 GeV FFA was proposed and is being studied at CIAE. To satisfy the beam dynamics requirements of the FFA, NC RF cavity with high Q and R will be adopted. It is found that the boat shape cavity is the most promising candidate. Therefore, R&D on a 177.6 MHz 1:4 scale boat shape prototype cavity is being carried out to study all aspects of developing such a high-power cavity. In this scenario, self-consistent multi-physics coupled simulation study with ANSYS HFSS and Workbench was carried out. This paper describes the method to deal with a mechanical model including hundreds of bodies in the FEM analysis and shows the simulation results. In addition, the manufacturing technology and some testing results are also presented.
 
poster icon Poster THPO015 [3.234 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-THPO015  
About • Received ※ 04 December 2022 — Revised ※ 11 January 2023 — Accepted ※ 31 January 2023 — Issue date ※ 16 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)