Paper | Title | Page |
---|---|---|
WEPO002 | A Comparison Study of the Designing Models of Range Modulator by Using FLUKA Simulation Codes | 204 |
|
||
In this study, we investigated the optimization of the range modulator. Range modulator used in proton radiotherapy is expected to be accurate enough to achieve spread-out Bragg peak(SOBP). Based on the theory of Thomas Bortfeld, four different range modulator models were designed and compared by using the FLUKA simulation codes. The four models are: uneven ridge filter, smooth ridge filter, uneven range modulator wheel, and smooth range modulator wheel. Using 100 MeV and 230 MeV proton beams, the dose spatial distribution of the four models were calculated when the SOBP sections were 3, 5, 10, and 20 cm. The results showed that in ideal motion condition, the four models all showed the ideal range modulation effect. The average value of the difference was less than 2%. The evenness of the smooth models is improved compared with the uneven models. The smooth ridge filter model performed best. On the basis of this model, we tried to realize the movement of the SOBP region by adding a binary shielding layer. The results showed that the SOBP region can move in a small range at the expense of acceptable accuracy error. This study provides a design reference for the range modulator in proton therapy, and provides a new technical scheme to fill the target area for precise therapy. | ||
![]() |
Poster WEPO002 [1.957 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-WEPO002 | |
About • | Received ※ 09 February 2023 — Revised ※ 17 February 2023 — Accepted ※ 18 February 2023 — Issue date ※ 09 May 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPO011 | Effect of 90 MeV Proton Irradiation on Spleen Injury in C57BL/6J Mice | 324 |
|
||
Funding: the Continuous Basic Scientific Research Project (No.WDJC-2019-11) Proton therapy has become one of the most important physiotherapies for tumors in the world, which can greatly improve the cure rate of tumors that are ineffective by conventional treatments. In addition, proton is also the main source of radiation in space environment. Therefore, it is of great scientific significance to use accelerators to carry out basic research on proton radiotherapy and space radiobiology, which can provide technical support and basic data for the optimal design of proton therapy and risk assessment of personnel in space environment. In this study, C57 mice were irradiated with 0, 0.2, 0.5 and 2 Gy by 90 MeV protons from 100 MeV cyclotron of China Institute of Atomic Energy. The mice were killed one day after irradiation. Body weight change and spleen organ coefficient were calculated. The expression of DNA damage-related protein γ H2AX was detected by western blotting. The results showed that compared with the control group, the body weight of mice in each irradiation group had no significant change, and the spleen organ coefficient decreased, indicating that the spleen atrophied after proton radiation, especially in 2 Gy. The results of Western blotting showed that the expression of γ H2AX in spleen increased significantly on the 1 day after irradiation, especially in 0.5 and 2 Gy, indicating that the spleen DNA damage was the serious on the 1 day after proton radiation. |
||
![]() |
Poster THPO011 [0.625 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-THPO011 | |
About • | Received ※ 10 February 2023 — Revised ※ 13 February 2023 — Accepted ※ 18 February 2023 — Issue date ※ 27 June 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |