Author: Flandroy, Q.
Paper Title Page
WEAO03 Development of the Cyclone® Key: How Interoperability Leads to Compactness 156
 
  • V. Nuttens, M. Abs, J. Caulier, Q. Flandroy, W.J.G.M. Kleeven, E.K. Kral, J. Mandrillon, O. Michaux, N.A.R. Mine, E. van der Kraaij
    IBA, Louvain-la-Neuve, Belgium
 
  Funding: Pole Mecatech/Biowin/SPW RW - Convention 8150: CardiAmmonia
In 2020, IBA has started the design, construction, tests and industrialization of a new proton cyclotron for the low energy range, the Cyclone® KEY, for PET isotope production (18F, 13N, 11C) for neurology, cardiology or oncology imaging. It is a compact and fully automated isochronous cyclotron accelerating H up to 9,2 MeV. Based on the successful design history and return of experience of the Cyclone® KIUBE, the Cyclone® KEY design has been focused on compactness (self-shielding enabled), cost effectiveness and ease of installation, operation and maintenance. The innovative design consists in the interoperability of the different subsystems: the magnet, the RF system, the vacuum system, the ion source, the stripping extraction, and target changers (with up to three targets). First beam tests results will also be presented.
 
slides icon Slides WEAO03 [2.848 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-WEAO03  
About • Received ※ 22 December 2022 — Revised ※ 11 January 2023 — Accepted ※ 01 February 2023 — Issue date ※ 11 April 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO009 Vacuum Model of the C400 Cyclotron for Hadrontherapy 317
 
  • V. Nuttens, P. Cailliau, Q. Flandroy, W.J.G.M. Kleeven, J. Mandrillon
    IBA, Louvain-la-Neuve, Belgium
  • Ph. Velten
    NHa, Caen, France
 
  Since 2020, NHa and IBA collaborate on the development of the C400 cyclotron dedicated to hadron therapy. This machine accelerates C6+ and He2+ up to 400 MeV/n and H2+ up to 260 MeV/n. The H2+ is extracted by stripping and the other particles by electrostatic extraction. Vacuum management in the injection line and in the cyclotron are of prime importance to avoid large beam losses. Indeed, C6+ ions are subjected to charge exchange during collision with the residual gas. On the opposite, H2+ will suffer from molecular binding break up. According to cross section data, the constraints on the residual gas pressure is driven by C6+ in the injection line and by H2+ in the cyclotron. An electrical equivalent model of the vacuum system of the cyclotron, its injection and extraction lines has been developed in LTSpice® software to determine the pressure along the particle path. Contributions from outgassing surfaces, O-ring outgassing and permeation are included and vacuum pump requirement could be obtained. The expected beam transmission is then evaluated based on cross sections available from the literature.  
poster icon Poster THPO009 [0.524 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-THPO009  
About • Received ※ 06 December 2022 — Revised ※ 12 January 2023 — Accepted ※ 31 January 2023 — Issue date ※ 14 March 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)