Author: Shurkhno, N.
Paper Title Page
TUP06 Stochastic Cooling as Wiener Process 37
 
  • N. Shurkhno
    FZJ, Jülich, Germany
 
  Traditional theoretical description of stochastic cooling process involves either ordinary differential equations for desired rms quantities or corresponding Fokker-Planck equations. Both approaches use different methods of derivation and seem independent, making transition from one to another quite an issue, incidentally entangling somewhat the basic physics underneath. On the other hand, treatment of the stochastic cooling as Wiener pro-cess and starting from the single-particle dynamics written in the form of Langevin equation seems to bring more clarity and integrity. Present work is an attempt to apply Wiener process formalism to the stochastic cooling in order to have a simple and consistent way of deriving its well-known equations.  
poster icon Poster TUP06 [0.414 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-TUP06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA11 The HESR Stochastic Cooling System, Design, Construction and Test Experiments in COSY 89
 
  • R. Stassen, B. Breitkreutz, N. Shurkhno, H. Stockhorst
    FZJ, Jülich, Germany
  • L. Thorndahl
    CERN, Geneva, Switzerland
 
  The construction phase of the stochastic cooling tanks for the HESR has started. Meanwhile two pickups (PU) and one kicker (KI) are fabricated. One PU and one KI are installed into the COSY ring for testing the new stochastic cooling system with real beam at various momenta. Small test-structures were already successfully operated at the Nuclotron in Dubna for longitudinal filter cooling but not for transverse cooling and as small PU in COSY. During the last COSY beam-time in 2017 additional transverse and ToF cooling were achieved. The first two series high power amplifiers were used for cooling and to test the temperature behavior of the combiner-boards at the KI. The system layout includes all components as planned for the HESR like low noise amplifier, switchable delay-lines and optical notch-filter. The HESR needs fast transmission-lines between PU and KI. Beside air-filled coax-lines, optical hollow fiber-lines are very attractive. First results with such a fiber used for the transverse signal path will be presented.  
slides icon Slides THA11 [11.863 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-COOL2017-THA11  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA13
Algorithmic Control of Stochastic Cooling Systems  
 
  • N. Shurkhno, R. Stassen
    FZJ, Jülich, Germany
 
  Adjustment of stochastic cooling systems especially from scratch is usually very tedious and time-consuming, but at the same time it is quite straightforward and therefore could be made fully automatic. The basic parameters one should consider to set-up a stochastic cooling system are system delay and gain, and optionally a notch-filter frequency and attenuation. With proper algorithms the adjustment and control of these parameters could be done to the best accuracy and speed. To achieve this a universal software and hardware solutions were developed, allowing for fast automatic adjustment of stochastic cooling systems as well as for maintaining the adjustment during system operation without maintenance stops or beam disturbance. This report presents the developed approach for the automatic control and adjustment of stochastic cooling systems.  
slides icon Slides THA13 [1.549 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)