

Algorithmic control of stochastic cooling systems

21 September 2017 | Nikolay Shurkhno, Rolf Stassen, FZ Jülich

Experience

Stochastic cooling system adjustment

We adjust **frequency response** of a microwave SC system S_{21} :

- $abs(S_{21})$ gain
- $arg(S_{21}) delay$
- + opt. notch-filter

But for noisy data in wide bandwidth..

- 1. How to measure?
- 2. How to adjust then?

Open-loop measurements: idea

$$S_{OL} = \frac{u_{out}}{u_{in}} = HTF \cdot BTF$$

BTF could be restored with additional measurements:

$$\widetilde{T}_{n}^{\perp} = \frac{1}{2\omega_{\beta}} \int \frac{\Psi(E)}{\omega_{n}(E) - \omega} dE$$
$$\widetilde{T}_{n}^{\Sigma} = j \frac{e^{2} f_{0}^{2}}{nk} \int \frac{\partial \Psi/\partial E}{E - E} dE$$

Open-loop measurements: techniques

- Single sweep
 - Manually set Network analyzer points to harmonics
 - Very fast (~ sec), especially for small number of points, but may produce inaccurate phase
- Harmonic sweep
 - Measure harmonics individually and calculate
 - More time-consuming (~ sec-min depend on number of points), but precise and doesn't require manual setting for points of NA (not every device has this option)

Longitudinal harmonic sweep: trick

Transverse harmonic sweep: problem

But for transverse cooling one need to know exact **fractional tune**, which could be unknown..

Single sweep vs. harmonic sweep

Blue – harmonic sweep ph.

Red – harmonic sweep ph.

Setup for open-loop measurements

Maintenance stops for adjustment

Parallel adjustment

Setup for open-loop measurements incl. notch-filter

Setup for open-loop measurements incl. notch-filter

Filter and system adjustments is done on the run

Simulated (CST)

Measured horiz. sum

Measured vert. sum

3.5

Off-topic: PU/K amplitude behavior

Signal from spectrum analyzer: S(f) $S(f) \sim \Psi \sim \frac{1}{n}$ So $|T_{PU}| \sim S(f) \cdot n$

1.5

2.0

2.5

Frequency (GHz)

3.0

4.0

Optical notch-filter layout

Notch-filter

Delays 0-15.5ns / dt=0.5ns 0-496ns / dt=16ns

JDSU crate Laser, modulator, attenuators, 0-0.5ns delay, etc.

RPi control

Notch-filter adjustment

Parameters to adjust: notch frequency and depths

- 1. Harmonic per harmonic ~ 1-3 min
 - 1. Measure average frequency and correct it
 - 2. Measure average depths and correct it
 - 3. Repeat it
- Measurement of delay and power difference of both legs ~ 1-5 sec

Notch-filter characteristics

Notch-filter amplitude response

Measured notches' position errors (difference between expected and measured notch)

Is this dangerous?

Notch-filter dispersion vs. small spreads

Waterfall plot of filtered longitudinal Schottky noise

Small dispersion is not a problem!

How to adjust?

Since freq. response is non-linear, so:

- Optimum gain NO
- Flat phase NOT ALWAYS
- Cooling rate vs. equilibrium ($t = \infty$ or $t = t_{lim}$)

We need simulation!

The need of simulation

HTF of system with inversed kicker: 0.3 HTF amplitude (linear) 0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1 2 3 200 150 HTF phase (grad) 100 50 0 -50 -100 -150 -200 2 3 4 Frequency (GHz)

Initial cooling rate vs. equilibrium

Member of the Helmholtz Association

Initial cooling rate vs. equilibrium

Open/closed-loop meas. for gain adjustment:

Simulation

System gain is optimized for:

1. Initial cooling rate
$$(t = 0)$$
: $\frac{1}{\tau_0} = -\frac{F}{x_{rms}} - \frac{D}{x_{rms}^2}$ (see TUP06)

2. Final distribution:

$$t = \infty$$
 $\frac{\partial \Psi}{\partial t} = -\frac{\partial}{\partial x} \left(F \Psi_{\infty} - D \frac{\partial \Psi_{\infty}}{\partial x} \right) = 0$

 $t = t_{lim}$ Fokker-Planck or equations for rms-values

Universal software for automatic control and adjustment of SC systems

A lot of different algorithms in a handy, though a bit messy interface

Open-source "one-button solution"

Thank you for your attention!

24