Paper | Title | Page |
---|---|---|
TUAA05 |
SRF Development for PIP-II: Status and Challenges | |
|
||
The recent progress on R&D in support of the construction of PIP-II is presented. Recent results and progress on low and medium beta cavity development, rf ancillary development, CM prototyping, resonance control, and the front end test facility PXIE are reported. | ||
![]() |
Slides TUAA05 [7.632 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB011 | Superconducting Travelling Wave Accelerating Structure Development | 1085 |
|
||
Funding: Work supported by US Department of Energy # DE-SC0006300 The 3 cell superconducting TW accelerating structure was developed to experimentally demonstrate and to study tuning issues for a new experimental device - the superconducting traveling wave accelerator (STWA), a technology that may prove of crucial importance to the high energy SRF linacs by raising the effective gradient and therefore reducing the overall cost. Recently, a STWA structure with a feedback waveguide has been suggested. The structure was optimized and has phase advance per cell of 105° which provide 24% higher accelerating gradient than in SW cavities. Also STWA structure has no strong sensitivity of the field flatness and its length may be much longer than SW structure. With this presentation, we discuss the current status of a 3-cell L-band SC traveling wave along with the analysis of its tuning issues. Special attention will be paid to feedback loop operation with the two-coupler feed system. We also report on the development and fabrication of a niobium prototype 3-cell SC traveling wave structure to be tested at 2°K in fall 2015. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB014 | Mechanical Optimization of High Beta 650 MHz Cavity for Pulse and CW Operation of PIP-II Project | 1093 |
|
||
The proposed design of the 0.8 GeV PIP-II SC Linac employs two families of 650 MHz 5-cell elliptical cavities with 2 different beta. The β=0.61 will cover the 185-500 MeV range and the β=0.92 will cover the 500-800 MeV range. In this paper we will present update of RF and mechanical design of dressed high beta cavity (β=0.92) for pulse regime of operation at 2 mA beam current. In previous CW version of PIP-II project the mechanical design was concentrated on minimization of frequency shift due to helium pressure fluctuation. In current case of pulse regime operation the main goal was Lorentz force detuning minimization. We present the scope of coupled RF-Mechanical issues and their resolution. Also detailed stress analysis of dresses cavity will be presented. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB105 | Demonstration of Coaxial Coupling Scheme at 26 MV/m for 1.3 GHz Tesla-Type SRF Cavities | 1397 |
|
||
Superconducting ILC-type cavities have an rf input coupler that is welded on. A detachable input coupler will reduce conditioning time (can be conditioned separately), reduce cost and improve reliability. The problem with placing an extra flange in the superconducting cavity is about creating a possible quench spot at the seal place. Euclid Techlabs LLC has developed a coaxial coupler which has an on the surface with zero magnetic field (hence zero surface current). By placing a flange in that area we are able to avoid disturbing surface currents that typically lead to a quench. The coupler is optimized to preserve the axial symmetry of the cavity and rf field. The surface treatments and rf test of the proto- type coupler with a 1.3 GHz ILC-type single-cell cavity at Fermilab will be reported and discussed. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
FRBA03 | SRF, Compact Accelerators for Industry & Society | 1467 |
|
||
Accelerators developed for Science now are used broadly for industrial, medical, and security applications. Over 30,000 accelerators touch over $500B/yr in products producing a major impact on our economy, health, and well being. Industrial accelerators must be cost effective, simple, versatile, efficient, and robust. Many industrial applications require high average beam power. Exploiting recent advances in Superconducting Radio Frequency (SRF) cavities and RF power sources as well as innovative solutions for the SRF gun and cathode system, a collaboration of Fermilab-CSU-NIU has developed a design for a compact SRF high-average power electron linac. Capable of 5-50 kW average power and continuous wave operation this accelerator will produce electron beam energies up to 10 MeV and small and light enough to mount on mobile platforms, such accelerators will enable new in-situ environmental remediation methods and new applications involving in-situ crosslinking of materials. More importantly, we believe this accelerator will be the first of a new class of simple, turn-key SRF accelerators that will find broad application in industry, medicine, security, and science. | ||
![]() |
Slides FRBA03 [2.342 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |