Author: Velas, K.M.
Paper Title Page
TUPB032 Energetic Condensation Growth of Nb on Cu SRF Cavities 629
 
  • K.M. Velas, S.F. Chapman, I. Irfan, M. Krishnan
    AASC, San Leandro, California, USA
 
  Funding: This research is supported by the US DOE via and SBIR grant: DE-SC0011371
Alameda Applied Sciences Corporation (AASC) grows Nb thin films via Coaxial Energetic Deposition (CED) from a cathodic arc plasma. The plasma from the cathode consists exclusively of 60-120eV Nb ions (Nb+ and Nb2+) that penetrate a few monolayers into the substrate and enable sufficient surface mobility to ensure that the lowest energy state (crystalline structure with minimal defects) is accessible to the film. AASC is coating 1.3 GHz SRF cavities using a graded anode to ensure uniform film thickness in the beam tube and elliptical regions. Copper cavities are centrifugal barrel polished and electropolished (done for us by the Fermilab Technical Division, Superconducting RF Development Department and by Thomas Jefferson National Accelerator Facility (JLAB)) before coating, to ensure good adhesion and improved film quality. The Nb coated copper cavities will undergo RF tests at JLAB and at Fermilab to measure Qo vs. E.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB034 Bulk Niobium Polishing and Electropolishing Steps for Thinfilm Coated Copper SRF Cavities 633
 
  • M. Krishnan, S.F. Chapman, I. Irfan, K.M. Velas
    AASC, San Leandro, California, USA
  • J.K. Spradlin, H. Tian
    JLab, Newport News, Virginia, USA
 
  Funding: Research supported at AASC by the US DOE via SBIR grant: DE-SC0011371. The JLab effort was provided by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177
Alameda Applied Sciences Corporation (AASC) grows Nb thin films via Coaxial Energetic Deposition (CED) from a cathodic arc plasma. The plasma consists of 60-120eV Nb ions (Nb+ and Nb++) [1] that penetrate a few monolayers into the substrate [2] and enable sufficient surface mobility to ensure that the lowest energy state (crystalline structure with minimal defects) is accessible to the film [3]. One limitation of CED thinfilms is the presence of Nb macroparticles (~0.1-10 microns) that could be deleterious to high field performance of the SRF cavity. One way to remove such macroparticles [4] is to grow a thick film (~3-5 microns), followed by mechanical polishing (MP) using the finest media as might be applied in Centrifugal Barrel Polishing (CBP) to achieve a 0.4 micron surface figure, and an electropolishing (EP) step to remove ~1 micron of Nb that also removes all traces of embedded media in the film. The residual 2-4 micron Nb film should more nearly resemble the surface of a bulk Nb cavity that has been subjected to the same steps. This paper describes experiments conducted on Cu coupons as a prelude to an SRF Cu cavity coating.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB083 Energetic Copper Coating on Stainless Steel Power Couplers for SRF Application 1330
 
  • I. Irfan, S.F. Chapman, M. Krishnan, K.M. Velas
    AASC, San Leandro, California, USA
  • W. Kaabi
    LAL, Orsay, France
 
  Funding: This research is supported by the US DOE via and SBIR grant: DE-SC0009581
Delivering RF power from the outside (at room temperature) to the inside of SRF cavities (at ~4 K temperature), requires a power coupler to be thermally isolating, while still electrically conducting on the inside. Stainless steel parts that are coated on the insides with a few skin depths of copper can meet these conflicting requirements. The challenge has been the adhesion strength of copper coating on stainless steel coupler parts when using electroplating methods. These methods also require a nickel flash layer that is magnetic and can therefore pose problems. Alameda Applied Sciences Corporation (AASC) uses Coaxial Energetic Deposition (CED) from a cathodic arc plasma to grow copper films directly on stainless steel coupler parts with no Ni layer and no electrochemistry. The vacuum arc plasma consists of ~100 eV Cu ions that penetrate a few monolayers into the stainless steel substrate to promote growth of highly adhesive films with crystalline structure. Adhesion strength and coating quality of copper coatings on complex stainless steel tubes, bellows, mock coupler parts and an actual Tesla Test Facility (TTF) type coupler part, are discussed.
* Adhesion and Cu quality testing were done for us by the Fermilab Technical Division, Superconducting RF Development Department
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB100 Nb Coatings on Bellows Used in SRF Accelerators 1379
 
  • S.F. Chapman, I. Irfan, M. Krishnan, K.M. Velas
    AASC, San Leandro, California, USA
 
  Funding: This research is supported by the US DOE via SBIR grant: DE-SC0007678
Alameda Applied Sciences Corporation (AASC) is developing bellows with the strength and flexibility of stainless steel and the low surface impedance of a superconductor. Such unique bellows would enable alignment of SRF cavity sections with greatly reduced RF losses. To that end, we grow Nb thin films via Coaxial Energetic Deposition (CED) from a cathodic arc plasma. Films of Nb were grown on stainless steel bellows, with and without an intermediate layer of Cu deposited via the same technique, to produce a working bellows with a well adhered superconducting inner layer. The Nb coated bellows have undergone tests conducted by our collaborators to evaluate their RF performance.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)