Author: Teichert, J.
Paper Title Page
TUPB010 Plug Transfer System for GaAs Photocathodes 553
 
  • P. Murcek, A. Arnold, P.N. Lu, J. Teichert, H. Vennekate, R. Xiang
    HZDR, Dresden, Germany
  • A. Burrill
    HZB, Berlin, Germany
 
  The transport and exchange technology of Cs2Te photocathode for the ELBE superconducting rf photoinjector (SRF gun) has been successfully developed and tested at HZDR. The next goal is to realize the transport of GaAs photocathode into SRF gun, which will need a new transfer system with XHV 10-11 mbar. The key component of the system is the transfer chamber and the load-lock system that will be connected to the SRF-gun. In the carrier four small plugs will be transported, and one of them will be plug on the cathode-body and inserted into the cavity. The new transport chamber allows the transfer and exchange of plugs between HZDR, HZB and other cooperating institutes. In HZDR this transfer system will also provide a direct connection between the SRFGUN and the GaAs preparation chamber in the Elbe-accelerator hall.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB055 RF Performance Results of the 2nd ELBE SRF Gun 1227
 
  • A. Arnold, M. Freitag, P.N. Lu, P. Murcek, J. Teichert, H. Vennekate, R. Xiang
    HZDR, Dresden, Germany
  • G. Ciovati, P. Kneisel, M. Stirbet, L. Turlington
    JLab, Newport News, Virginia, USA
 
  As in 2007 the first 3.5 cell superconducting radio frequency (SRF) gun was taken into operation at Helmholtz-Zentrum Dresden-Rossendorf, it turned out that the specified performance to realize an electron energy of 9.4 MeV has not been achieved. Instead, the resonator of the gun was limited by field emission to about one third of this value and the measured beam parameters remained significantly below its expectations. However, to demonstrate the full potential of this electron source for the ELBE linear accelerator, a second and slightly modified SRF gun was developed and built in collaboration with Thomas Jefferson National Accelerator Facility. We will report on commissioning of this new SRF gun and present a full set of RF performance results. Additionally, investigations are shown that try to explain a particle contamination that happened recently during our first cathode transfer.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB057 ELBE SRF Gun II - Emittance Compensation Schemes 1235
 
  • H. Vennekate, A. Arnold, D. Janssen, P.N. Lu, P. Murcek, J. Teichert, R. Xiang
    HZDR, Dresden, Germany
  • P. Kneisel
    JLab, Newport News, Virginia, USA
 
  In May 2014 the first SRF photo injector at HZDR has been replaced by a new gun, featuring a new resonator and cryostat. The intention for this upgrade has been to reach for higher beam energies, bunch charges and therefore an increased average beam current, which is to be injected into the superconducting, CW ELBE accelerator, where it can be used for multiple purposes, such as THz generation or Compton backscattering. Because of the increased bunch charge of this injector compared to its predecessor, it demands upgrades of the existing and/or novel approaches to alleviate the transverse emittance growth. One of these methods is the integration of a superconducting solenoid into the cryostat. Another method, the so called RF focusing, is realized by displacing the photo cathode's tip and retracting it from the last cell of the resonator. In this case, part of the accelerating field is sacrificed for a better focus of the electron bunch right at the start of its generation. Besides particle tracking simulations, a recent study, investigating on the exact position of the cathode tip with respect to the cell's back plane after tuning and cool down, has been performed.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)