Paper | Title | Page |
---|---|---|
TUPB013 | Fermilab Cryomodule Test Stand Design and Plans | 566 |
|
||
Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. A facility dedicated to SRF cryomodule testing is under construction at Fermilab. The test stand has been designed to be flexible enough to cool down and power test full length TESLA-style 8-cavity cryomodules as well cryomodules for low-β acceleration. We describe the design considerations, status, and near future plans for utilization of the test stand. |
||
![]() |
Poster TUPB013 [5.146 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB119 | LCLS-II 1.3 GHz Cryomodule Design – Modified TESLA-Style Cryomodule for CW Operation | 1417 |
|
||
Funding: Work supported, in part, by the US DOE and the LCLS-II Project. We will present the design of the 1.3 GHz cryomodule for the Linear Coherent Light Source upgrade (LCLS-II) at SLAC. Fermilab is responsible for the design of this cryomodule, a modified TESLA-style cryomodule to accommodate continuous wave (CW) mode operation and LCLS-II beam parameters, consisting of eight 1.3 GHz superconducting RF cavities, a corrector magnet package, and instrumentation. Thirty-five of these cryomodules, approximately half built at Fermilab and half at Jefferson Lab, will become the main accelerating elements of the 4 GeV linac. The modifications and special features of the cryomodule include: thermal and cryogenic design to handle high heat loads in CW operation, magnetic shielding and cool-down configurations to enable high quality factor (Q0) performance of the cavities, liquid helium management to address the different liquid levels in the 2-phase pipe with 0.5% SLAC tunnel longitudinal slope, support structure design to meet California seismic design requirements, and with the overall design consistent with space constrains in the existing SLAC tunnel. The prototype cryomodule assembly will begin in August 2015 and is to be completed in early 2016. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |