Paper |
Title |
Page |
THPB005 |
Simulations of 3.9 GHz CW Coupler for LCLS-II Project |
1066 |
|
- I.V. Gonin, T.N. Khabiboulline, A. Lunin, N. Solyak
Fermilab, Batavia, Illinois, USA
|
|
|
LCLS-II linac is based on XFEL/ILC superconducting technology. TTF-III fundamental power coupler for the 3.9 GHz 9-cell cavities has been modifies to satisfy requirements of LCLS-II, operating in CW regime. In this paper we discuss the results of COMSOL analysis of the possible modification of couplers, working at various operating regimes. We present also the results of mechanical study.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text,
※ RIS/RefMan,
※ EndNote (xml)
|
|
|
THPB014 |
Mechanical Optimization of High Beta 650 MHz Cavity for Pulse and CW Operation of PIP-II Project |
1093 |
|
- T.N. Khabiboulline, I.V. Gonin, C.J. Grimm, A. Lunin, T.H. Nicol, V.P. Yakovlev
Fermilab, Batavia, Illinois, USA
- P. Kumar
RRCAT, Indore (M.P.), India
|
|
|
The proposed design of the 0.8 GeV PIP-II SC Linac employs two families of 650 MHz 5-cell elliptical cavities with 2 different beta. The β=0.61 will cover the 185-500 MeV range and the β=0.92 will cover the 500-800 MeV range. In this paper we will present update of RF and mechanical design of dressed high beta cavity (β=0.92) for pulse regime of operation at 2 mA beam current. In previous CW version of PIP-II project the mechanical design was concentrated on minimization of frequency shift due to helium pressure fluctuation. In current case of pulse regime operation the main goal was Lorentz force detuning minimization. We present the scope of coupled RF-Mechanical issues and their resolution. Also detailed stress analysis of dresses cavity will be presented.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text,
※ RIS/RefMan,
※ EndNote (xml)
|
|
|
THPB105 |
Demonstration of Coaxial Coupling Scheme at 26 MV/m for 1.3 GHz Tesla-Type SRF Cavities |
1397 |
|
- Y. Xie, A. Kanareykin
Euclid TechLabs, LLC, Solon, Ohio, USA
- T.N. Khabiboulline, A. Lunin, V. Poloubotko, A.M. Rowe, N. Solyak, V.P. Yakovlev
Fermilab, Batavia, Illinois, USA
- J. Rathke
AES, Medford, New York, USA
|
|
|
Superconducting ILC-type cavities have an rf input coupler that is welded on. A detachable input coupler will reduce conditioning time (can be conditioned separately), reduce cost and improve reliability. The problem with placing an extra flange in the superconducting cavity is about creating a possible quench spot at the seal place. Euclid Techlabs LLC has developed a coaxial coupler which has an on the surface with zero magnetic field (hence zero surface current). By placing a flange in that area we are able to avoid disturbing surface currents that typically lead to a quench. The coupler is optimized to preserve the axial symmetry of the cavity and rf field. The surface treatments and rf test of the proto- type coupler with a 1.3 GHz ILC-type single-cell cavity at Fermilab will be reported and discussed.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text,
※ RIS/RefMan,
※ EndNote (xml)
|
|
|