Author: Klinke, D.
Paper Title Page
THPB031 Operation Experience with Half Cell Measurement Machine and Cavity Tuning Machine in 3 Years of European XFEL Cavity Series Production 1149
 
  • J.H. Thie, A. Gössel, J. Iversen, D. Klinke, C. Müller, A.A. Sulimov, D. Tischhauser
    DESY, Hamburg, Germany
 
  For the European XFEL superconducting Cavity series production at both cavity vendors’ four manufacturing machines for production key functions, HAZEMEMA and CTM, are supplied by DESY. Among three years of cavity production in two companies a lot of experience is gathered about influence of surroundings and production quality on cycle times, machine drop outs, general stability time of machines and parts subject to wear. Significant factors on cycle time for tuning operation like temperature stability and drift during tuning and measurements, precision of cell trimming before welding and tuning and generally geometrical factors are shown. RF aspects of tuning and production quality control as additional measurements for TM011-mode to estimate quality of its damping is presented. Performed full Cavity RF measurements exceeds XFEL specifications gives a possibility for additional quality control on welding shrinkage stability and it’s homogeneously distribution. The use of HAZEMEMA and CTM to assess the impact of asymmetric trimming, including calculation of it’s influence on the higher-order modes, is shown.  
poster icon Poster THPB031 [0.201 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB056 SRF Gun Cavity R&D at DESY 1231
 
  • D. Kostin, C. Albrecht, A. Brinkmann, Th. Buettner, J. Eschke, T. Feldmann, A. Gössel, D. Klinke, A. Matheisen, W.-D. Möller, D. Reschke, M. Schmökel, J.K. Sekutowicz, W. Singer, X. Singer, N. Steinhau-Kühl, J. Ziegler, B. van der Horst
    DESY, Hamburg, Germany
  • M. Barlak, J.A. Lorkiewicz, R. Nietubyć
    NCBJ, Świerk/Otwock, Poland
 
  SRF Gun Cavity is an ongoing accelerator R&D project at DESY, being developed since several years. Currently several SRF Gun cavity prototypes were simulated, built and tested in our Lab and elsewhere. Lately the 1.6 cells Pb thin film cathode niobium cavity was tested in a vertical cryostat with a different cathode plug configurations. Cathode plug design was improved, as well as SRF Gun Cavity cleaning procedures. Results of the last cavity performance tests are presented and discussed.  
poster icon Poster THPB056 [1.257 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)