Author: Huque, N.A.
Paper Title Page
THPB062 Accelerated Life Testing of LCLS-II Cavity Tuner Motor 1257
 
  • N.A. Huque, M.E. Abdelwhab, E. Daly
    JLab, Newport News, Virginia, USA
  • Y.M. Pischalnikov
    Fermilab, Batavia, Illinois, USA
 
  An Accelerated Life Test (ALT) of the Phytron stepper motor used in the LCLS-II cavity tuner is being carried out at JLab. Since the motor will reside inside the cryomodule, any failure would lead to a very costly and arduous repair. As such, the motor will be tested for the equivalent of five lifetimes before being approved for use in the production cryomodules. The 9-cell LCLS-II cavity will be simulated by disc springs with an equivalent spring constant. Hysteresis plots of the motor position vs. tuner position – measured via an installed linear variable differential transformer (LVDT) – will be used to determine any drift from the required performance. The titanium spindle will also be inspected for loss of lubrication. This paper outlines the ALT plan and latest results.  
poster icon Poster THPB062 [2.794 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB063 BNL 56 MHz HOM Damper Fabrication at JLab 1262
 
  • N.A. Huque, W.A. Clemens, E. Daly
    JLab, Newport News, Virginia, USA
  • S. Bellavia, G.T. McIntyre, S.K. Seberg, Q. Wu
    BNL, Upton, Long Island, New York, USA
 
  The Higher-Order Mode (HOM) Dampers for the Relativistic Heavy-Ion Collider’s (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL) are currently being fabricated at JLab. The coaxial damper is primarily constructed with high RRR niobium, with a combination of niobium and sapphire rings as the filter assembly. Several design changes have been made with respect to the performance of a prototype damper – also fabricated at JLab – which was found to quench at low power. The production dampers are being tuned and tested in the JLab vertical test area (VTA) prior to delivery. Two HOM dampers will be delivered to BNL; they are to be used in the RHIC in November, 2015. This paper outlines the challenges faced in the fabrication and tuning process.  
poster icon Poster THPB063 [2.315 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB110 Procurements for LCLS-II Cryomodules at JLab 1405
 
  • E. Daly, G. Cheng, G.K. Davis, T. Hiatt, N.A. Huque, F. Marhauser, H. Park, J.P. Preble, K.M. Wilson
    JLab, Newport News, Virginia, USA
 
  Funding: This work was supported by the LCLS-II Project and the U.S. Department of Energy, Contract DE-AC02-76SF00515.
The Thomas Jefferson National Accelerator Facility is currently engaged, along with several other DOE national laboratories, in the Linac Coherent Light Source II project (LCLS II). The SRF Institute at Jefferson Lab will be building 1 prototype and 17 production cryomodules based on the TESLA / ILC / XFEL design. Each cryomodule will contain eight nine cell cavities with coaxial power couplers operating at 1.3 GHz. Procurement of components for cryomodule construction has been divided amongst partner laboratories in a collaborative manner. JLab has primary responsibility for six procurements include the dressed cavities, cold gate valves, higher-order-mode (HOM) and field probe feedthroughs, beamline bellows cartridges, cavity tuner assemblies and HOM absorbers. For procurements led by partner laboratories, JLab collaborates and provides technical input on specifications, requirements and assembly considerations. This paper will give a detailed description of plans and status for JLab procurements.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)