Author: Heilmann, M.
Paper Title Page
MOPB066 R&D Status of the New Superconducting CW Heavy Ion LINAC@GSI 258
 
  • M. Basten, M. Busch, F.D. Dziuba, D. Mäder, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • M. Amberg, K. Aulenbacher, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth, V. Gettmann, M. Heilmann, S. Mickat
    GSI, Darmstadt, Germany
 
  To keep the ambitious Super Heavy Element (SHE) physics program at GSI competitive a superconducting (sc) continuous wave (cw) high intensity heavy ion LINAC is currently under progress as a multi-stage R&D program of GSI, HIM and IAP*. The baseline linac design consists of a high performance ion source, a new low energy beam transport line, an (cw) upgraded High Charge State Injector (HLI), and a matching line (1.4 MeV/u) which is followed by the new sc-DTL LINAC for post acceleration up to 7.3 MeV/u. In the present design the new cw-heavy ion LINAC comprises constant-beta sc Crossbar-H-mode (CH) cavities operated at 217 MHz. The advantages of the proposed beam dynamics concept applying a constant beta profile are easy manufacturing with minimized costs as well as a straightforward energy variation**. An important milestone will be the full performance test of the first CH cavity (Demonstrator), in a horizontal cryo module with beam. An advanced demonstrator setup comprising a string of cavities and focussing elements is proposed to build from 10 short CH-cavities with 8 gaps. The corresponding simulations and technical layout of the new cw heavy ion LINAC will be presented.
* W. Barth et al., Further R&D for a new Superconducting cw Heavy Ion LINAC@GSI, IPAC2014, THPME004
**M. Schwarz et al., Beam Dynamics for the sc cw Heavy Ion Linac at GSI, IPAC2015, THPF025
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB067 Steps Towards Superconducting CW-LINAC for Heavy Ions at GSI 262
 
  • M. Miski-Oglu, M. Amberg, K. Aulenbacher, V. Gettmann
    HIM, Mainz, Germany
  • W.A. Barth, M. Heilmann, S. Mickat, S. Yaramyshev
    GSI, Darmstadt, Germany
  • M. Basten, D. Bänsch, F.D. Dziuba, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Providing heavy ion beams for the ambitious experiment program at GSI, the Universal Linear Accelerator (UNILAC) serves as a powerful high duty factor (25%) accelerator. Beam time availability for SHE-research will be decreased due to the limitation of the UNILAC providing a proper beam for FAIR simultaneously. To keep the GSI-SHE program competitive on a high level, a standalone sc cw-LINAC in combination with the upgraded GSI High Charge State injector is planned to build. In preparation for this the first linac section (financed by HIM and partly by HGF-ARD-initiative) will be tested in 2015 as a demonstrator. After successful testing the construction of an extended cryomodule comprising two further, but shorter CH cavities is foreseen to test until end of 2017. In this contribution the measurement of the beam parameters at the entrance of CW-Demonstartor, the preliminary simulation of beam dynamics for the first stage of advanced demonstrator will be presented. As a final R&D step towards an entire linac an advanced cryo module comprising up to five CH cavities is envisaged for 2019 serving for first user experiments at the coulomb barrier.  
poster icon Poster MOPB067 [2.807 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB020 Recent Status New Superconducting CW Heavy Ion LINAC@GSI 589
 
  • V. Gettmann, M. Amberg, K. Aulenbacher, W.A. Barth, M. Miski-Oglu
    HIM, Mainz, Germany
  • M. Amberg, M. Basten, D. Bänsch, F.D. Dziuba, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • W.A. Barth, M. Heilmann, S. Mickat, S. Yaramyshev
    GSI, Darmstadt, Germany
 
  The demonstrator is a prototype of the first section of the proposed cw-LINAC@GSI, comprising a superconducting CH-cavity embedded by two superconducting solenoids. The sc CH-structure is the key component and offers a variety of research and development. The beam focusing solenoids provide maximum fields of 9.3 T at an overall length of 380 mm and a free beam aperture of 30 mm. The magnetic induction of the fringe is minimized to 50 mT at the inner NbTi-surface of the neighboring cavity. The fabrication of the key components is still in progress and is near to completion. After cold performance testing of the RF cavity, the helium jacket will be welded on. The cryostat is partly assembled and will be finished in the next weeks. The test environment is completely prepared. Advanced emittance measurement is foreseen to prepare for best matching of the heavy ion beam from the injector. Integration of the cryostat into the beam line, the first cool down of the module and commissioning of the RF elements will be performed as next steps towards a complete testing of the demonstrator.  
poster icon Poster TUPB020 [8.595 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)