Author: Davis, G.K.
Paper Title Page
MOPB033 LCLS-II SRF Cavity Processing Protocol Development and Baseline Cavity Performance Demonstration 159
 
  • M. Liepe, P. Bishop, H. Conklin, R.G. Eichhorn, F. Furuta, G.M. Ge, D. Gonnella, T. Gruber, D.L. Hall, G.H. Hoffstaetter, J.J. Kaufman, G. Kulina, J.T. Maniscalco, T.I. O'Connell, P. Quigley, D.M. Sabol, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M. Checchin, A.C. Crawford, A. Grassellino, C.J. Grimm, A. Hocker, M. Martinello, O.S. Melnychuk, J.P. Ozelis, A. Romanenko, A.M. Rowe, D.A. Sergatskov, W.M. Soyars, R.P. Stanek, G. Wu
    Fermilab, Batavia, Illinois, USA
  • E. Daly, G.K. Davis, M.A. Drury, J.F. Fischer, A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
  • M.C. Ross
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported, in part, by the US DOE and the LCLS-II Project under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-76SF00515.
The ”Linac Coherent Light Source-II” Project will construct a 4 GeV CW superconducting RF linac in the first kilometer of the existing SLAC linac tunnel. The baseline design calls for 280 1.3 GHz nine-cell cavities with an average intrinsic quality factor Q0 of 2.7·1010 at 2K and 16 MV/m accelerating gradient. The LCLS-II high Q0 cavity treatment protocol utilizes the reduction in BCS surface resistance by nitrogen doping of the RF surface layer, which was discovered originally at FNAL. Cornell University, FNAL, and TJNAF conducted a joint high Q0 R&D program with the goal of (a) exploring the robustness of the N-doping technique and establishing the LCLS-II cavity high Q0 processing protocol suitable for production use, and (b) demonstrating that this process can reliably achieve LCLS-II cavity specification in a production acceptance testing setting. In this paper we describe the LCLS-II cavity protocol and analyze combined cavity performance data from both vertical and horizontal testing at the three partner labs, which clearly shows that LCLS-II specifications were met, and thus demonstrates readiness for LCLS-II cavity production.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB040 Performance of Dressed Cavities for the Jefferson Laboratory LCLS-II Prototype Cryomodule - With Comparison to the Pre-Dressed Performance 178
 
  • A.D. Palczewski, G.K. Davis
    JLab, Newport News, Virginia, USA
  • F. Furuta, G.M. Ge, D. Gonnella, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 with supplemental funding from the LCLS-II Project U.S. DOE Contract No. DE-AC02-76SF00515.
Initial vertical RF test results and quench studies for six of the eight undressed 9 cell cavities slated for use in the Jefferson laboratory LCLS-II prototype cryomodule were presented at IPAC2015*. For the final string 2 more cavities AES029 and AES030 (work done at Cornell) are being processed and tested for qualification before helium vessel welding. In addition, AES034 (initial R&D treatment) is being reworked with the current production protocol after a surface reset to improve the overall performance. After final qualification all 8 cavities will be welded into helium vessels and equipped with HOM couplers. In this paper we will present the final undressed and dressed vertical RF data comparing the changes in the surface resistance before their installation in the cryomodule string.
*A.D. Palczewski et al. Quench Studies of Six High Temperature Nitrogen Doped 9 Cell Cavities for use in the LCLS-II Prototype Cryo-module at Jefferson Laboratory, Proc. IPAC2015, WEPWI019, 2015.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB117 Identification and Evaluation of Contamination Sources During Clean Room Preparation of SRF Cavities 448
 
  • L. Zhao, G.K. Davis, A.V. Reilly
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts DE-AC05-06OR23177 and DE-AC02-76SF00515 for the LCLS-II Project.
Particles are one possible cause of field emission issues in SRF cavity operations. During clean room cavity preparation, several processes could contribute to the generation of particles. One of them is friction between hardware during assembly and disassembly. It is important to understand the behaviours that generate and propagate particles into cavities. Using a single cell cavity, particle shedding between flanges and other materials have been tested. The number of particles is recorded with an airborne particle counter, and the generated particles are examined with microscope. The migration of particles into a cavity due to different movements is studied. Suggestions are made to reduce particle generation and prevent contamination of the cavity interior area.
 
poster icon Poster MOPB117 [2.832 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB008 A New Cryogenic Control System for the Vertical Test Area at Jefferson Lab 549
 
  • G.K. Davis, T. Goodman, P. Kushnick, T. Powers, C.M. Wilson
    JLab, Newport News, Virginia, USA
 
  Funding: DOE
The Vertical Test Area at Jefferson Lab, consisting of eight vertical dewars, recently received a major upgrade by replacing the original (1995) cryogenic control system. A new, state-of-the-art, distributed control system (DC S) based on Programmable Logic Controllers (PLCs) was installed and commissioned. The new system increases facility throughput, reliability and cryogenic efficiency, while improving safety. The system employs a touchscreen graphical user interface and a highly redundant architecture on an Ethernet backbone.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB110 Procurements for LCLS-II Cryomodules at JLab 1405
 
  • E. Daly, G. Cheng, G.K. Davis, T. Hiatt, N.A. Huque, F. Marhauser, H. Park, J.P. Preble, K.M. Wilson
    JLab, Newport News, Virginia, USA
 
  Funding: This work was supported by the LCLS-II Project and the U.S. Department of Energy, Contract DE-AC02-76SF00515.
The Thomas Jefferson National Accelerator Facility is currently engaged, along with several other DOE national laboratories, in the Linac Coherent Light Source II project (LCLS II). The SRF Institute at Jefferson Lab will be building 1 prototype and 17 production cryomodules based on the TESLA / ILC / XFEL design. Each cryomodule will contain eight nine cell cavities with coaxial power couplers operating at 1.3 GHz. Procurement of components for cryomodule construction has been divided amongst partner laboratories in a collaborative manner. JLab has primary responsibility for six procurements include the dressed cavities, cold gate valves, higher-order-mode (HOM) and field probe feedthroughs, beamline bellows cartridges, cavity tuner assemblies and HOM absorbers. For procurements led by partner laboratories, JLab collaborates and provides technical input on specifications, requirements and assembly considerations. This paper will give a detailed description of plans and status for JLab procurements.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)