Paper | Title | Page |
---|---|---|
MOAA01 | FRIB Project: Moving to Production Phase | 1 |
|
||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 The Facility for Rare Isotope Beams (FRIB) is based upon a high power heavy ion driver linac under construction at Michigan State University under a cooperative agreement with the US DOE. The construction of conventional facilities already started in the summer, 2013, and the accelerator production began from the summer, 2014. FRIB will accelerate all the stable ion beams from proton to uranium beyond a beam energy of 200 MeV/u and up to a beam power of 400 kW to produce a great number of various rare isotopes using SRF linac. The FRIB SRF driver linac makes use of four kinds of SRF structures. Totally 332 two gap cavities and 48 cryomodules are needed. All SRF hardware components have been validated and are now moving to production. The SRF infrastructure also has been constructed in MSU campus. This talk will present FRIB project and challenges regarding SRF technologies. The status of SRF linac hardware validation and their production, SRF infrastructure status and plan shall be addressed. The information that can be relevant for future large scale proton/ion SRF linacs will also be provided. |
||
![]() |
Slides MOAA01 [2.754 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB099 | Magnetic Foils for SRF Cryomodule | 844 |
|
||
Funding: Work supported by FRA under DOE contract DE-AC02-07CH11359 High quality factor niobium cavities require minimal residual magnetic field around the high magnetic field region. A typical global magnetic shield takes more material and provides less effective magnetic screening. On the other hand, local magnetic shield has to introduce complex geometries to cover access ports and instrumentation and thermal straps. Local magnetic source and thermal current will increase residual field seen by SRF cavities regardless the complexity of local magnetic shield. Magnetic foils that is cryogenic compatible provides a great benefit to reduce residual magnetic field. This paper will describe the evaluation of such magnetic foils in both vertical and horizontal test. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB102 | Validation of Local Magnetic Shielding for FRIB Using a Prototype Cryomodule | 857 |
|
||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, and the U.S. National Science Foundation under Grant No. PHY-1102511. The local magnetic shield design and cryogenic magnetic shielding material for the FRIB QWR cryomodule was validated in a two cavity, one solenoid prototype cryomodule. The magnetic fields were measured inside and outside the magnetic shielding before, during, and after operation of an 8 T superconducting solenoid. The effect of demagnetization cycles of the solenoid was also examined. The magnetic field at the cavity’s high RF magnetic field area, inside the magnetic shield and with the solenoid off, was measured using a single-axis fluxgate to be less than 0.3 μT (3 mG) after cool down of the cryomodule. A 3.07 μT (30.7 mG) residual field was observed at high magnetic field area after conclusion of solenoid operation. This was attributed to the persistent currents circulating in the superconducting solenoid. Demagnetization cycles were therefore determined to be unnecessary for FRIB cryomodules, as long as the solenoid is normal conducting when the cavity is cooled through the superconducting critical temperature. S.K. Chandrasekaran currently at Fermi National Accelerator Laboratory, Batavia, IL, USA. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |