Author: Arkan, T.T.
Paper Title Page
MOPB087 Integrated High-Power Tests of Dressed N-doped 1.3 GHz SRF Cavities for LCLS-II 342
 
  • N. Solyak, T.T. Arkan, B.E. Chase, A.C. Crawford, E. Cullerton, I.V. Gonin, A. Grassellino, C.J. Grimm, A. Hocker, J.P. Holzbauer, T.N. Khabiboulline, O.S. Melnychuk, J.P. Ozelis, T.J. Peterson, Y.M. Pischalnikov, K.S. Premo, A. Romanenko, A.M. Rowe, W. Schappert, D.A. Sergatskov, R.P. Stanek, G. Wu
    Fermilab, Batavia, Illinois, USA
 
  New auxiliary components have been designed and fabricated for the 1.3 GHz SRF cavities comprising the LCLS-II linac. In particular, the LCLS-II cavity’s helium vessel, high-power input coupler, higher-order mode (HOM) feedthroughs, magnetic shielding, and cavity tuning system were all designed to meet LCLS-II specifications. Integrated tests of the cavity and these components were done at Fermilab’s Horizontal Test Stand (HTS) using several kilowatts of continuous-wave (CW) RF power. The results of the tests are summarized here.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB110 LCLS-II 1.3 GHz Design Integration for Assembly and Cryomodule Assembly Facility Readiness at Fermilab 893
 
  • T.T. Arkan, C.M. Ginsburg, Y. He, J.A. Kaluzny, Y.O. Orlov, T.J. Peterson, K. Premo
    Fermilab, Batavia, Illinois, USA
 
  Funding: DOE
LCLS-II is a planned upgrade project for the linear coherent light source (LCLS) at Stanford Linear Accelerator Center (SLAC). The LCLS-II linac will consist of thirty-five 1.3 GHz and two 3.9 GHz superconducting RF continuous wave (CW) cryomodules that Fermilab and Jefferson Lab will assemble in collaboration with SLAC. The LCLS-II 1.3 GHz cryomodule design is based on the European XFEL pulsed-mode cryomodule design with modifications needed for CW operation. Both Fermilab and Jefferson Lab will each assemble and test a prototype 1.3 GHz cryomodule to assess the results of the CW modifications. After prototype cryomodule tests, both laboratories will increase cryomodule production rate to meet the challenging LCLS-II project installation schedule requirements of approximately one cryomodule per month per laboratory. This paper presents the 1.3 GHz CW cryomodule design integration for assembly at Fermilab, Fermilab Cryomodule Assembly Facility (CAF) infrastructure modifications for the LCLS-II cryomodules, and readiness for the required assembly throughput.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB086 LCLS-II Fundamental Power Coupler Mechanical Integration 1340
 
  • K.S. Premo, T.T. Arkan, Y.O. Orlov, N. Solyak
    Fermilab, Batavia, Illinois, USA
 
  Funding: DOE
LCLSII is a planned upgrade project for the linear coherent light source (LCLS) at SLAC. The LCLSII linac will consist of thirtyfive 1.3 GHz and two 3.9 GHz superconducting RF continuous wave (CW) cryomodules that Fermilab and Jefferson Lab will assemble in collaboration with SLAC. The LCLSII 1.3 GHz cryomodule design is based on the European XFEL pulsed mode cryomodule design with modifications needed for CW operation. The 1.3 GHz cryomodules for LCLSII will utilize a modified TTF3 syle fundamental power coupler design. Due to CW operation heat removal from the power coupler is critical. This paper presents the details of the mechanical integration of the power coupler into the cryomodule. Details of thermal braids, connections, and other interfaces are discussed.
 
poster icon Poster THPB086 [1.031 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB119 LCLS-II 1.3 GHz Cryomodule Design – Modified TESLA-Style Cryomodule for CW Operation 1417
 
  • T.J. Peterson, T.T. Arkan, C.M. Ginsburg, Y. He, J.A. Kaluzny, M.W. McGee, Y.O. Orlov
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported, in part, by the US DOE and the LCLS-II Project.
We will present the design of the 1.3 GHz cryomodule for the Linear Coherent Light Source upgrade (LCLS-II) at SLAC. Fermilab is responsible for the design of this cryomodule, a modified TESLA-style cryomodule to accommodate continuous wave (CW) mode operation and LCLS-II beam parameters, consisting of eight 1.3 GHz superconducting RF cavities, a corrector magnet package, and instrumentation. Thirty-five of these cryomodules, approximately half built at Fermilab and half at Jefferson Lab, will become the main accelerating elements of the 4 GeV linac. The modifications and special features of the cryomodule include: thermal and cryogenic design to handle high heat loads in CW operation, magnetic shielding and cool-down configurations to enable high quality factor (Q0) performance of the cavities, liquid helium management to address the different liquid levels in the 2-phase pipe with 0.5% SLAC tunnel longitudinal slope, support structure design to meet California seismic design requirements, and with the overall design consistent with space constrains in the existing SLAC tunnel. The prototype cryomodule assembly will begin in August 2015 and is to be completed in early 2016.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)