Author: Belomestnykh, S.A.
Paper Title Page
TUOAA1 Bunched Beam Electron Cooler for Low-energy RHIC Operation 363
 
  • A.V. Fedotov, S.A. Belomestnykh, I. Ben-Zvi, M. Blaskiewicz, D.M. Gassner, D. Kayran, V. Litvinenko, B. Martin, W. Meng, I. Pinayev, B. Sheehy, S. Tepikian, J.E. Tuozzolo, G. Wang
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, I. Ben-Zvi, V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
RHIC operations with heavy ion beams at energies below 10 GeV/nucleon are motivated by a search for the QCD Critical Point. An electron cooler is proposed as a means to increase RHIC luminosity for collider operations at these low energies. The electron cooling system should be able to deliver an electron beam of adequate quality over a wide range of electron beam energies (0.9-5 MeV). It also should provide optimum 3-D cooling for both hadron beams in the collider. A method based on bunched electron beam, which is also a natural approach for high-energy electron cooling, is being developed. In this paper, we describe the requirements for this system, its design aspects, as well as the associated challenges.
 
slides icon Slides TUOAA1 [4.197 MB]  
 
WEPAC06 Mechanical Design of the 704 MHz 5-cell SRF Cavity Cold Mass for CeC PoP Experiment 799
 
  • J.C. Brutus, S.A. Belomestnykh, I. Ben-Zvi, Y. Huang, V. Litvinenko, I. Pinayev, J. Skaritka, L. Snydstrup, R. Than, J.E. Tuozzolo, W. Xu
    BNL, Upton, Long Island, New York, USA
  • T.L. Grimm, R. Jecks, J.A. Yancey
    Niowave, Inc., Lansing, Michigan, USA
 
  Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
A 5-cell SRF cavity operating at 704 MHz will be used for Coherent Electron Cooling Proof of Principle (CeC PoP) system under development for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The CeC PoP experiment will demonstrate the ability of relativistic electrons to cool a single bunch of heavy ions in RHIC. The cavity will accelerate 2 MeV electrons from a 112 MHz SRF gun up 22 MeV. Novel mechanical designs, including the super fluid heat exchanger, helium vessel, vacuum vessel, tuner mechanism, and FPC are presented. Structural and modal analysis, using ANSYS were performed to confirm the cavity chamber and He vessel structural stability and to calculate the tuning sensitivity of the cavity. This paper provides an overview of the design, the project status and schedule of the 704 MHz 5-cell SRF for CeC PoP experiment.
 
 
WEPAC07 Mechanical Design of 112 MHz SRF Gun FPC for CeC PoP Experiment 802
 
  • J.C. Brutus, S.A. Belomestnykh, Y. Huang, V. Litvinenko, G.J. Mahler, I. Pinayev, J. Skaritka, L. Snydstrup, R. Than, J.E. Tuozzolo, Q. Wu, T. Xin
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
A Quarter-Wave Resonator (QWR) type SRF gun operating at 112 MHz will be used for Coherent Electron Cooling Proof of Principle (CeC PoP) system under development for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The CeC PoP experiment will demonstrate the ability of relativistic electrons to cool a single bunch of heavy ions in RHIC. This cavity is designed to generate a 2 MeV, high charge (several nC), low repetition rate (78 kHz) electron beam using a new fundamental power coupler (FPC) design approach. Structural and thermal analysis, using ANSYS were performed to confirm the FPC structural stability and to calculate the deflection due to heat load from RF power generation. This paper provides an overview of the design, structural and thermal analysis, test results, and FPC tuning drive system for the 112 MHz gun.
 
 
THPAC18 Progress on Growth of a Multi-alkali Photocathode for ERL 1181
 
  • E. Wang, S.A. Belomestnykh, I. Ben-Zvi, T. Rao, J. Smedley
    BNL, Upton, Long Island, New York, USA
  • I. Ben-Zvi, M. Ruiz-Osés
    Stony Brook University, Stony Brook, USA
  • X. Liang
    SBU, Stony Brook, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and DOE grant at Stony Brook DE-SC0005713
K2CsSb is a robust photocathode capable of generating electron beams with high peak, high average current and low thermal emittance. During the last two year, a great improvement in the design and fabrication of a reliable deposition system suitable for K2CsSb cathode growth and its insertion into BNL high current ERL SRF gun has been achieved. A standard procedure for the growth of multi-alkali cathodes combined with another procedure to transport these cathodes into the SRF gun was developed. The first cathode growth on a copper insertion was ready to mount into the 704MHz gun. In this article, we will describe the progress of cathode growth and transportation for ERL project. In particular, laser heating and the cathode growth on Ta will be included.
 
 
THPAC34 Diamond Amplifier Design and Preliminary Test Results 1211
 
  • T. Xin, S.A. Belomestnykh, I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
  • S.A. Belomestnykh, I. Ben-Zvi, T. Rao, J. Skaritka, J. Smedley, E. Wang, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • M. Gaowei, E.M. Muller
    SBU, Stony Brook, New York, USA
 
  Funding: Work is supported at BNL by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE. The work at Stony Brook is supported by the US DOE under grant DE-SC0005713.
Diamond as a large energy gap material can be easily made into a negative electron affinity (NEA) device. Using a few keV primary electrons as input and a few kV bias, the NEA diamond will emit cold electrons into vacuum with a large gain. We had tested and reported the performance of the diamond amplifier in our DC system somewhere else. The best amplification achieved so far was above 170. Next step of the experiment is to test the diamond amplifier in the 112 MHz superconducting RF electron gun. In this report we describe the design and simulations of the diamond amplifier to be tested in our SRF gun, show the finished amplifier containing the DC primary gun and light optics. We also provide preliminary test results of the laser and electron beam transport.
 
 
THPAC35 Multipacting Study of 112 MHz SRF Electron Gun 1214
 
  • T. Xin, S.A. Belomestnykh, I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
  • S.A. Belomestnykh, I. Ben-Zvi, X. Liang, T. Rao, J. Skaritka, E. Wang, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • C.H. Boulware, T.L. Grimm
    Niowave, Inc., Lansing, Michigan, USA
  • X. Liang
    SBU, Stony Brook, New York, USA
 
  Funding: Work is supported at BNL by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE. The work at Stony Brook is supported by the US DOE under grant DE-SC0005713.
The 112 MHz quarter wave superconducting electron gun was designed and built as an injector for the coherent electron cooling experiment. Besides that, the gun is suitable for testing various types of photocathodes thanks to its specially designed cathode holder. In recent RF tests of the gun at 4 K, the accelerating voltage reached 0.9 MV CW and more than 1 MV in pulsed mode. During this testing, we observed several multipacting barriers at low electromagnetic field levels. Since the final setup of the gun will be different from the cool down test configuration, we want to understand the exact location of the multipacting sites. We used Track3P to simulate multipacting. The results show several resonant trajectories that might be responsible for the observed barriers, but fortunately no strong multipacting barriers have been found in the cavity.
 
 
THPHO06 SRF and RF Systems for CeC PoP Experiment 1310
 
  • S.A. Belomestnykh, I. Ben-Zvi, J.C. Brutus, D. Kayran, V. Litvinenko, P. Orfin, I. Pinayev, T. Rao, B. Sheehy, J. Skaritka, K.S. Smith, R. Than, J.E. Tuozzolo, E. Wang, Q. Wu, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, I. Ben-Zvi, V. Litvinenko, M. Ruiz-Osés, T. Xin
    Stony Brook University, Stony Brook, USA
  • C.H. Boulware, T.L. Grimm
    Niowave, Inc., Lansing, Michigan, USA
  • Y. Huang
    Fermilab, Batavia, USA
  • X. Liang
    SBU, Stony Brook, New York, USA
  • P.A. McIntosh, A.J. Moss, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
Efforts to experimentally prove a concept of the coherent electron cooling are underway at BNL. A short 22-MeV linac will provide high charge, low repetition rate beam to cool a single ion bunch in RHIC. The linac will consist of a 112 MHz SRF gun, two 500 MHz normal conducting bunching cavities and a 704 MHz five-cell accelerating SRF cavity. The paper describes the SRF and RF systems, the linac layout, and discusses the project status, first test results and schedule.
 
 
THPAC34 Diamond Amplifier Design and Preliminary Test Results 1211
 
  • T. Xin, S.A. Belomestnykh, I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
  • S.A. Belomestnykh, I. Ben-Zvi, T. Rao, J. Skaritka, J. Smedley, E. Wang, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • M. Gaowei, E.M. Muller
    SBU, Stony Brook, New York, USA
 
  Funding: Work is supported at BNL by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE. The work at Stony Brook is supported by the US DOE under grant DE-SC0005713.
Diamond as a large energy gap material can be easily made into a negative electron affinity (NEA) device. Using a few keV primary electrons as input and a few kV bias, the NEA diamond will emit cold electrons into vacuum with a large gain. We had tested and reported the performance of the diamond amplifier in our DC system somewhere else. The best amplification achieved so far was above 170. Next step of the experiment is to test the diamond amplifier in the 112 MHz superconducting RF electron gun. In this report we describe the design and simulations of the diamond amplifier to be tested in our SRF gun, show the finished amplifier containing the DC primary gun and light optics. We also provide preliminary test results of the laser and electron beam transport.
 
 
THPAC35 Multipacting Study of 112 MHz SRF Electron Gun 1214
 
  • T. Xin, S.A. Belomestnykh, I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
  • S.A. Belomestnykh, I. Ben-Zvi, X. Liang, T. Rao, J. Skaritka, E. Wang, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • C.H. Boulware, T.L. Grimm
    Niowave, Inc., Lansing, Michigan, USA
  • X. Liang
    SBU, Stony Brook, New York, USA
 
  Funding: Work is supported at BNL by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE. The work at Stony Brook is supported by the US DOE under grant DE-SC0005713.
The 112 MHz quarter wave superconducting electron gun was designed and built as an injector for the coherent electron cooling experiment. Besides that, the gun is suitable for testing various types of photocathodes thanks to its specially designed cathode holder. In recent RF tests of the gun at 4 K, the accelerating voltage reached 0.9 MV CW and more than 1 MV in pulsed mode. During this testing, we observed several multipacting barriers at low electromagnetic field levels. Since the final setup of the gun will be different from the cool down test configuration, we want to understand the exact location of the multipacting sites. We used Track3P to simulate multipacting. The results show several resonant trajectories that might be responsible for the observed barriers, but fortunately no strong multipacting barriers have been found in the cavity.
 
 
THPHO06 SRF and RF Systems for CeC PoP Experiment 1310
 
  • S.A. Belomestnykh, I. Ben-Zvi, J.C. Brutus, D. Kayran, V. Litvinenko, P. Orfin, I. Pinayev, T. Rao, B. Sheehy, J. Skaritka, K.S. Smith, R. Than, J.E. Tuozzolo, E. Wang, Q. Wu, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, I. Ben-Zvi, V. Litvinenko, M. Ruiz-Osés, T. Xin
    Stony Brook University, Stony Brook, USA
  • C.H. Boulware, T.L. Grimm
    Niowave, Inc., Lansing, Michigan, USA
  • Y. Huang
    Fermilab, Batavia, USA
  • X. Liang
    SBU, Stony Brook, New York, USA
  • P.A. McIntosh, A.J. Moss, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
Efforts to experimentally prove a concept of the coherent electron cooling are underway at BNL. A short 22-MeV linac will provide high charge, low repetition rate beam to cool a single ion bunch in RHIC. The linac will consist of a 112 MHz SRF gun, two 500 MHz normal conducting bunching cavities and a 704 MHz five-cell accelerating SRF cavity. The paper describes the SRF and RF systems, the linac layout, and discusses the project status, first test results and schedule.