Light Sources and FELs
Accel/Storage Rings 20: Accelerators and Storage Rings (Other)
Paper Title Page
TUOAS1 Tutorial on Accelerator-Based Light Sources 702
 
  • M. Borland
    ANL, Argonne, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Accelerator-based light sources are some of the largest and most successful scientific user facilities in existence, serving tens of thousands of users each year. These important facilities enable research in diverse fields, including biology, pharmaceuticals, energy conservation and production, data storage, and archaeology. In this tutorial, we briefly review the history of accelerator-based light sources. We present an overview of the different types of accelerator-based light sources, including a description of their various operating principles, as well as a discussion of measures of performance. Technical challenges of current and future light sources are also reviewed.
 
slides icon Slides TUOAS1 [1.421 MB]  
 
THP189 Low Horizontal Beta Function in Long Straights of the NSLS-II Lattice 2471
 
  • F. Lin, J. Bengtsson, W. Guo, S. Krinsky, Y. Li, L. Yang
    BNL, Upton, New York, USA
 
  Funding: Work supported by U.S. DOE, Contract No. DE-AC02-98CH10886
The NSLS-II storage ring lattice is comprised of 30 DBA cells arranged in 15 superperiods. There are 15 long straight sections (9.3m) for injection, RF and insertion devices and 15 shorter straights (6.6m) for insertion devices. In the baseline lattice, the short straights have small horizontal and vertical beta functions but the long straights have large horizontal beta function optimized for injection. In this note, we explore the possibility of maintaining three long straights with large horizontal beta function while providing the other 12 long straights with smaller horizontal beta function to optimize the brightness of insertion devices. Our study considers the possible linear lattice solutions as well as characterizing the nonlinear dynamics. Results are reported on optimizations of dynamic aperture required for good injection efficiency and adequate Touschek lifetime.
 
 
THP190 Additional Quadrupoles at Center of Long Straights in the NSLS-II Lattice 2474
 
  • F. Lin, J. Bengtsson, W. Guo, S. Krinsky, Y. Li, L. Yang
    BNL, Upton, New York, USA
 
  Funding: Work supported by U.S. DOE, Contract No. DE-AC02-98CH10886
The NSLS-II storage ring lattice is comprised of 30 DBA cells arranged in 15 superperiods. There are 15 long straight sections (9.3m) for injection, RF and insertion devices and 15 shorter straights (6.6m) for insertion devices. In the baseline lattice, the short straights have small horizontal and vertical beta functions but the long straights have large horizontal beta function optimized for injection. In this note, we explore the possibility of installing additional quadrupoles at the center of selected long straight sections in order to provide two low-beta source locations for undulators. The required modification to the linear lattice is discussed as well as the preservation of adequate dynamic aperture required for good injection efficiency and adequate Touschek lifetime.
 
 
THP191 Recent Progress in Injector Improvement of SPEAR 3 2477
 
  • K. Tian, W.J. Corbett, D. Dell'Orco, D. Ernst, S.M. Gierman, J.A. Safranek, J.F. Schmerge, B. Scott
    SLAC, Menlo Park, California, USA
 
  The frequent injection and high current operation of SPEAR 3 storage ring requires high stability of the injector system at the Stanford Synchrotron Radiation Laboratory (SSRL). The lattice of linac-to-booster (LTB) transport line was not well understood and controlled prior to this work. In this paper, we discuss the significant efforts that have been made to improve the performance of the LTB. A method to correct the distortion of the closed orbit in the booster by moving 2 quadrupoles is also presented.