Author: Zaltsman, A.
Paper Title Page
MOOCN3 RHIC Polarized Proton Operation 41
 
  • H. Huang, L. A. Ahrens, I.G. Alekseev, E.C. Aschenauer, G. Atoian, M. Bai, A. Bazilevsky, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, A. Dion, K.A. Drees, W. Fischer, C.J. Gardner, J.W. Glenn, X. Gu, M. Harvey, T. Hayes, L.T. Hoff, R.L. Hulsart, J.S. Laster, C. Liu, Y. Luo, W.W. MacKay, Y. Makdisi, M. Mapes, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, W.B. Schmidke, V. Schoefer, F. Severino, D. Smirnov, K.S. Smith, D. Steski, D. Svirida, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
RHIC operation as the polarized proton collider presents unique challenges since both luminosity and spin polarization are important. With longitudinally polarized beams at the experiments, the figure of merit is LP4. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system has been installed to improve longitudinal match at injection and to increase luminosity. The beam dumps were upgraded to allow for increased bunch intensities. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control has also been improved this year. Additional efforts were put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point was chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper.
 
slides icon Slides MOOCN3 [2.331 MB]  
 
MOP298 Commisioning Results from the Recently Upgraded RHIC LLRF System 678
 
  • K.S. Smith, M. Harvey, T. Hayes, G. Narayan, F. Severino, S. Yuan, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
During RHIC Run 10, the first phase of the LLRF Upgrade was successfully completed. This involved replacing the aging VME based system with a modern digital system based on the recently developed RHIC LLRF Upgrade Platform, and commissioning the system as part of the normal RHIC start up process. At the start of Run 11, the second phase of the upgrade is underway, involving a significant expansion of both hardware and functionality. This paper will review the commissioning effort and provide examples of improvements in system performance, flexibility and scalability afforded by the new platform.
 
 
MOP299 Commissioning and Performance of the BNL EBIS LLRF System 681
 
  • S. Yuan, M. Harvey, T. Hayes, G. Narayan, F. Severino, K.S. Smith, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Electron Beam Ion Source (EBIS) LLRF system utilizes the RHIC LLRF upgrade platform to achieve the required functionality and flexibility. The LLRF system provides drive to the EBIS high-level RF system, employs IQ feedback to provide required amplitude and phase stability, and implements a cavity resonance control scheme. The embedded system provides the interface to the existing Controls System, making remote system control and diagnostic possible. The flexibility of the system allows us to reuse VHDL codes, develop new functionalities, improve current designs, and implement new features with relative ease. In this paper, we will discuss the commissioning process, issues encountered, and performance of the system.
 
 
TUP125 High Power RF Systems for the BNL ERL Project 1065
 
  • A. Zaltsman, R.F. Lambiase
    BNL, Upton, Long Island, New York, USA
 
  The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2.5 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.  
 
TUP056 BNL 703 MHz Superconducting RF Cavity Testing 913
 
  • B. Sheehy, Z. Altinbas, I. Ben-Zvi, D.M. Gassner, H. Hahn, L.R. Hammons, J.P. Jamilkowski, D. Kayran, J. Kewisch, N. Laloudakis, D.L. Lederle, V. Litvinenko, G.T. McIntyre, D. Pate, D. Phillips, C. Schultheiss, T. Seda, R. Than, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • A. Burrill
    JLAB, Newport News, Virginia, USA
  • T. Schultheiss
    AES, Medford, NY, USA
 
  Funding: This work received support from Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Brookhaven National Laboratory (BNL) 5-cell, 703 MHz superconducting RF accelerating cavity has been installed in the high-current energy recovery linac (ERL) experiment. This experiment will function as a proving ground for the development of high-current machines in general and is particularly targeted at beam development for an electron-ion collider (eRHIC). The cavity performed well in vertical tests, demonstrating gradients of 20 MV/m and a Q0 of 1010. Here we will present its performance in the horizontal tests, and discuss technical issues involved in its implementation in the ERL.
 
 
TUP061 FPC Conditioning Cart at BNL 928
 
  • W. Xu, Z. Altinbas, S.A. Belomestnykh, I. Ben-Zvi, A. Burrill, S. Deonarine, D.M. Gassner, J.P. Jamilkowski, P. Kankiya, D. Kayran, N. Laloudakis, L. Masi, G.T. McIntyre, D. Pate, D. Phillips, T. Seda, A.N. Steszyn, T.N. Tallerico, R.J. Todd, D. Weiss, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • M.D. Cole, G.J. Whitbeck
    AES, Medford, NY, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The 703MHz superconducting gun will have 2 fundamental power couplers (FPCs). Each FPC will deliver up to 500kW of RF power. In order to prepare the couplers for high power RF service and process multipacting, the FPCs should be conditioned before they are installed in the gun. A conditioning cart based test stand, which includes a vacuum pumping system, controllable bake-out system, diagnostics, interlocks and data log system has been designed, constructed and commissioned by collaboration of BNL and AES. This paper presents FPC conditioning cart systems and summarizes the conditioning process and results.
 
 
WEP261 Performance of the New EBIS Preinjector 1966
 
  • J.G. Alessi, E.N. Beebe, S. Binello, C.J. Gardner, O. Gould, L.T. Hoff, N.A. Kling, R.F. Lambiase, V. LoDestro, R. Lockey, M. Mapes, A. McNerney, J. Morris, M. Okamura, A. Pendzick, D. Phillips, A.I. Pikin, D. Raparia, J. Ritter, T.C. Shrey, L. Smart, L. Snydstrup, C. Theisen, M. Wilinski, A. Zaltsman, K. Zeno
    BNL, Upton, Long Island, New York, USA
  • U. Ratzinger, A. Schempp
    IAP, Frankfurt am Main, Germany
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy, and by the National Aeronautics and Space Administration.
The construction and initial commissioning phase of a new heavy ion preinjector was completed at Brookhaven in September, 2010, and the preinjector is now operational. This preinjector, using an EBIS source to produce high charge state heavy ions, provided helium and neon ion beams for use at the NASA Space Radiation Laboratory in the Fall of 2010, and gold and uranium beams are being commissioned during the 2011 run cycle for use in RHIC. The EBIS operates with an electron beam current of up to 10 A, to produce mA level currents in 10 to 40 μs beam pulses. The source is followed by an RFQ and IH linac to accelerate ions with q/m > 0.16 to an energy of 2 MeV/amu, for injection into the Booster synchrotron. The performance of the preinjector is presented, including initial operational experience for the NASA and RHIC programs.
 
 
THP006 Status of High Current R&D Energy Recovery Linac at Brookhaven National Laboratory 2148
 
  • D. Kayran, Z. Altinbas, D.R. Beavis, I. Ben-Zvi, R. Calaga, D.M. Gassner, H. Hahn, L.R. Hammons, A.K. Jain, J.P. Jamilkowski, N. Laloudakis, R.F. Lambiase, D.L. Lederle, V. Litvinenko, G.J. Mahler, G.T. McIntyre, W. Meng, B. Oerter, D. Pate, D. Phillips, J. Reich, T. Roser, C. Schultheiss, B. Sheehy, T. Srinivasan-Rao, R. Than, J.E. Tuozzolo, D. Weiss, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
 
  An ampere-class 20 MeV superconducting energy recovery linac (ERL) is under construction at Brookhaven National Laboratory (BNL) for testing of concepts relevant for high-energy coherent electron cooling and electron-ion colliders. One of the goals is to demonstrate an electron beam with high charge per bunch (~5 nC) and low normalized emittance (~5 mm-mrad) at an energy of 20 MeV. A flexible lattice for the ERL loop provides a test bed for investigating issues of transverse and longitudinal instabilities and diagnostics for CW beam. A superconducting 703 MHz RF photo-injector is considered as an electron source for such a facility. We will start with a straight pass (gun/cavity/beam stop) test for gun performance studies. Later, we will install and test a novel injection line concept for emittance preservation in a lower-energy merger. Here we present the status and our plans for construction and commissioning of this facility.  
 
THP054 Medium Energy Heavy Ion Operations at RHIC 2220
 
  • K.A. Drees, L. A. Ahrens, M. Bai, J. Beebe-Wang, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, C. Carlson, R. Connolly, T. D'Ottavio, W. Fischer, W. Fu, D.M. Gassner, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, P.F. Ingrassia, N.A. Kling, M. Lafky, J.S. Laster, R.C. Lee, V. Litvinenko, Y. Luo, W.W. MacKay, M. Mapes, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, F.C. Pilat, V. Ptitsyn, G. Robert-Demolaize, T. Roser, P. Sampson, T. Satogata, V. Schoefer, C. Schultheiss, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, M. Wilinski, A. Zaltsman, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n.