Author: Valishev, A.
Paper Title Page
MOOCN2 Tevatron Accelerator Physics and Operation Highlights 37
 
  • A. Valishev
    Fermilab, Batavia, USA
 
  Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The performance of the Tevatron collider demonstrated continuous growth over the course of Run II, with the peak luminosity reaching 4·1032 cm-2 s-1 and the weekly integration rate exceeding 70 pb-1. This report presents a review of the most important advances that contributed to this performance improvement, including beam dynamics modeling, precision optics measurements and stability control, implementation of collimation during low-beta squeeze. Algorithms employed for optimization of the luminosity integration are presented and the lessons learned from high-luminosity operation are discussed. Studies of novel accelerator physics concepts at the Tevatron are described, such as the collimation techniques using crystal collimator and hollow electron beam, and compensation of beam-beam effects.
 
slides icon Slides MOOCN2 [5.422 MB]  
 
MOODN1 Results of Head-on Beam-beam Compensation Studies at the Tevatron 67
 
  • A. Valishev, G. Stancari
    Fermilab, Batavia, USA
 
  Funding: Work supported by the Fermi Research Alliance, LLC under Contract DE-AC02-07CH11359 with the United States Department of Energy, and by the DOE through the US LHC Accelerator Research Program (LARP).
At the Tevatron collider, we studied the feasibility of suppressing the antiproton head-on beam-beam tune spread using a magnetically confined 5-keV electron beam with Gaussian transverse profile overlapping with the circulating beam. When electron cooling of antiprotons is applied in regular Tevatron operations, the head-on beam-beam effect on antiprotons is small. Therefore, we first focused on the operational aspects, such as beam alignment and stability, and on fundamental observations of tune shifts, tune spreads, lifetimes, and emittances. We also attempted two special collider stores with only 3 proton bunches colliding with 3 antiproton bunches, to suppress long-range forces and enhance head-on effects. We present here the results of this study and a comparison between numerical simulations and observations, in view of the planned application of this compensation concept to RHIC.
 
slides icon Slides MOODN1 [2.680 MB]  
 
MOP147 Experimental Study of Magnetically Confined Hollow Electron Beams in the Tevatron as Collimators for Intense High-Energy Hadron Beams 370
 
  • G. Stancari, G. Annala, V.D. Shiltsev, D.A. Still, A. Valishev, L.G. Vorobiev
    Fermilab, Batavia, USA
 
  Funding: Fermi Research Alliance, LLC operates Fermilab under Contract DE-AC02-07CH11359 with the US Department of Energy. This work was partially supported by the US LHC Accelerator Research Program (LARP).
Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and tested at Fermilab for this purpose. It was installed in one of the Tevatron electron lenses in the summer of 2010. We present the results of the first tests of the hollow-beam collimation concept on individual 980-GeV antiproton bunches in the Tevatron.
 
 
WEP070 Ring for Test of Nonlinear Integrable Optics 1606
 
  • A. Valishev, V.S. Kashikhin, S. Nagaitsev
    Fermilab, Batavia, USA
  • V.V. Danilov
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: Work supported by UT-Battelle, LLC and by FRA, LLC for the U. S. DOE under contracts No. DE-AC05-00OR22725 and DE-AC02-07CH11359 respectively.
Nonlinear optics is a promising idea potentially opening the path towards achieving super high beam intensities in circular accelerators. Creation of a tune spread reaching 50% of the betatron tune would provide strong Landau damping and make the beam immune to instabilities. Recent theoretical work* have identified a possible way to implement stable nonlinear optics by incorporating nonlinear focusing elements into a specially designed machine lattice. In this report we propose the design of a test accelerator for a proof-of-principle experiment. We discuss possible studies at the machine, requirements on the optics stability and sensitivity to imperfections.
* V. Danilov and S. Nagaitsev, Phys. Rev. ST Accel. Beams 13, 084002 (2010)