

Tevatron Accelerator Physics and Operation Highlights

Alexander Valishev for the Tevatron group **Fermilab**

PAC'11, New York, NY March 28, 2011

- This report presents the results of work of many people at Fermilab's Accelerator Division and Accelerator Physics Center
- The author would like to thank J.Annala, A.Burov, C.Gattuzo, R.S.Moore, L.Prost, A.Shemyakin, V.Shiltsev, G. Stancari, D.Still, for their help in preparation of this talk.

Outline

- Run II performance and improvements
- Highlights from the last two years of running
 - > Operational improvements
 - Reliability and quench statistics
- Accelerator physics studies
 - Dancing bunches
 - Ghost modes
 - Beam-beam compensation
 - Crystal collimation
 - Hollow electron beam collimator

Aerial View of the Tevatron

Tevatron Parameters

Beam energy	0.98 TeV
Number of bunches	36
Protons per bunch	2.9×10 ¹¹
Antiproton per bunch	0.9 × 10 ¹¹
Initial proton emittance (95% norm)	18 <i>µ</i> m
Initial antiproton emittance (95% norm)	8 μm
Initial proton bunch length	0.55 m
Initial antiproton bunch length	0.45 m
β -function at IP	0.28 m
Betatron tunes (Q_x, Q_y)	20.583, 20.585
Initial luminosity	4.03 × 10 ³² cm ⁻ ² s ⁻¹
Luminosity lifetime	5 h

Tevatron Run II Integrated Luminosity

Integrated Luminosity 10512.46 (1/pb)

Initial Luminosity and pbar Accumulation Rate

PAC'11 3/28/2011 - A.Valishev

Collider Fill Cycle for Store 2511 in 2003

PAC'11 3/28/2011 - A.Valishev

Collider Fill Cycle for the Record Store

Contributions to Luminosity Loss and (Some) Fixes

Proton lifetime at 150GeV:	Optimization of sextupoles	
currently lose 5% protons and	Machine impedance (Lambertsons)	
1% antiprotons	Improved injection helix	
Beam losses on ramp:	Better helix	
now ~2%	Improved coupling (repaired all 800 dipoles)	
	Improved instrumentation	
Beam losses in squeeze:	Better helix	
now 2% protons and <1% pbars	Collimation (2010)	
	Improved aperture	
β^* and beam separation	Better lattice modeling	
Luminosity lifetime:	Better helix	
dominated by luminous losses, IBS. Beam-beam ~5%	New proton working point	
	Second order chromaticity	
Reliability: in FY2010 averaged 120 store hours/week (71%)	cryo, controls, TEL, orbit stabilization, collimation, etc.	

Highlights of the Last Two Years

- Recycler storage efficiency
- Proton scraping in Main Injector
- Quench statistics and Collimation in the squeeze
- Operations strategy

Recycler Ring (RR)

- 8 GeV antiproton storage ring located in the Main Injector (MI) tunnel
 - Accumulates antiprotons coming from the Accumulator and prepares the beam to be sent to the MI/Tevatron
 - Increases 6D phase density of antiprotons by a factor of 50
 - Permanent magnet-based
 - Every 40-50 min, (15 25)·10¹⁰ antiprotons are transferred from Accumulator through MI in three parcels
 - Became possible with <u>improved electron cooling</u> and <u>streamlined</u> <u>procedures</u>

Circumference	3310.4 m	
Momentum	8.889 GeV/c	
Vacuum	< 5.10 ⁻¹⁰ Torr	
Life time	up to 1000	
hour		
Max. number of		
stored antiproto	ns 608×10^{10}	
Tunes (H/V)	25.464/24.468	
Equipped with stochastic and electron cooling		

<u>Typical Recycler</u> accumulation cycle

At $N_p \sim (350 - 500) \cdot 10^{10}$, antiprotons are transferred to MI for acceleration and injection into Tevatron

Recycler Ring operation in 2009-2011

- The average life time improved to 200 400 h for Np= (300-525)×10¹⁰
 - Procedures, improved RF manipulations, improved vacuum
 - The average life time is determined primarily by losses right after injections
 - In steady state, >500 h at 500×10^{10}
 - Typical 'storage efficiency' is ~ 93% (up 3-5%)
 - Includes losses due to transfers and the finite RR life time
- Brightness of the antiproton beam is limited by a transverse instability
 - The threshold depends on the longitudinal tails (See WEP114)
- Additional flexibility
 - Capability to extract only a portion of the beam into the same 36 bunches

Also see WEP113, WEP228

Average life time in RR vs the number of antiprotons in Aug 2010 – Feb 2011

oscillogram of an instability in RR.

Proton Scraping in MI

Momentum scraping of proton beam at injection in MI 3-4% increase of initial luminosity, better losses

Courtesy C.Gattuso

Quench Statistics

- Total quenches in HEP mode Oct.2007-Mar.2011: 154
- Percentage
 - ≻ Ramp: 16
 - > Squeeze: 41
 - Collisions: 68
- 32 quenches in squeeze were caused by beam dynamics related losses

- Total number of stores 1200 one in 40 lost in squeeze, between Apr. 09-Mar.11 14 of 372 lost in squeeze - one in 30
- A quench during squeeze accounts for ~8pb⁻¹ lost ~3% integral
 - Integrated doses lead to equipment failures at detectors

Collimating Losses in Squeeze

A single proton collimator + orbit control reduced losses. Since implementation in Dec. 2010 114 stores – no quenches in squeeze

- Model of collider operation
 - Antiproton transmission efficiencies
 - > Stacking rate in Accumulator as function of stack size
 - Pbar lifetime in Recycler
 - Tevatron initial luminosity and luminosity decay
 - Shot setup time

Optimization of Store Duration

- The model was used to determine the optimal operating parameters to maximize luminosity integral
 - > Emphasis on repeatability of stores
 - > Model allows to work around exceptions: schedule accesses, studies to minimize impact

- Stable machine allows time for studies of accelerator physics
- There is strong interest from Fermilab, CERN, LARP, BNL to use Tevatron for beam physics studies
 - > A workshop was held in 2010 to collect the list of topics
 - > Currently a program is being generated
- Some experiments are in progress (were done) parasitically or using end-of-store dedicated time:
 - Dancing bunches
 - Ghost modes
 - > Beam-beam compensation
 - Crystal collimation
 - Hollow electron beam collimator

A.Burov talk MOODS4 experimental confirmation WEP116

- Ghost lines were present in the Shottky spectra since the early days of Run II
 - They are not stable in time, oscillating with period 15 min to hours
 - ➤ Move by as much as 0.02 s
 - Estimated effect on emittance growth is
 0.06 π mm mrad/h

Tevatron Electron Lenses

e- beam energy	< 10 kV
Peak e- current	< 3 A
Solenoid B-field	30 kG
Gun B-field	3 kG
e- beam radius (SEFT)	2.3 mm
Interaction length	2 m
ΤΕL-1 βx/βy	95/32 m
ΤΕL-2 β×/βγ	66/160 m

Electron Lens for Beam-Beam Compensation

- With Gaussian profile electron beam overlapping with antiprotons, a number of studies were performed
 - Tune shift and tune spread measurements
 - Effect of misalignments
 - Tune scans to determine the effect of TEL on resonances

Pbar–only store 7720 – TEL on A1–A4

G.Stancari talk MOODN1

Collimation with Hollow Electron Lens

 Use hollow profile electron beam as slow diffuser to clean halo particles.

Collimation with Hollow Electron Lens

GUN

V.Zvoda talk MOODN1

- Deflect halo particles by a large angle using bent crystals
 - Repeated Volume Reflections in an array of parallel crystals results in larger deflection, *e.g.* at *E*=1 TeV:

One crystal
$$\theta_{VR} = 8 \mu rad; \theta_{bend} = 200 \mu rad$$

8 crystals $\theta_{VR} = 8 \times 8 = 64 \mu rad$

Summary

- Numerous improvements in the Tevatron collider complex allowed stable operation at initial luminosities of $3.5-4 \times 10^{32}$ cm⁻²s⁻¹
- The weekly integrated luminosity exceeded 70 pb⁻¹, average ~50 pb⁻¹
- For a 25 year-old machine, the Tevatron is exceptionally reliable averaging 110-120 hours of HEP time per week
- Recent operational improvements targeted mostly reliability and efficiency of operations and account for approx. 10-13% of luminosity
- Tevatron is a test bed for many accelerator physics experiments
 - Beam collimation
 - Beam-beam effects and their compensation
 - Beam dynamics
 - Instrumentation and optics