Tevatron Accelerator Physics and Operation Highlights

Alexander Valishev
for the Tevatron group

Fermilab

PAC'11, New York, NY
March 28, 2011
Acknowledgments

- This report presents the results of work of many people at Fermilab’s Accelerator Division and Accelerator Physics Center.
- The author would like to thank J. Annala, A. Burov, C. Gattuzo, R. S. Moore, L. Prost, A. Shemyakin, V. Shiltsev, G. Stancari, D. Still, for their help in preparation of this talk.
Outline

- Run II performance and improvements
- Highlights from the last two years of running
 - Operational improvements
 - Reliability and quench statistics
- Accelerator physics studies
 - Dancing bunches
 - Ghost modes
 - Beam-beam compensation
 - Crystal collimation
 - Hollow electron beam collimator
Aerial View of the Tevatron

- Linac
- Booster
- Debuncher/Accumulator
- Main Injector/Recycler
- CDF
- D0
- Protons
- Antiprotons

Tevatron Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>0.98 TeV</td>
</tr>
<tr>
<td>Number of bunches</td>
<td>36</td>
</tr>
<tr>
<td>Protons per bunch</td>
<td>2.9×10^{11}</td>
</tr>
<tr>
<td>Antiproton per bunch</td>
<td>0.9×10^{11}</td>
</tr>
<tr>
<td>Initial proton emittance (95% norm)</td>
<td>18 μm</td>
</tr>
<tr>
<td>Initial antiproton emittance (95% norm)</td>
<td>8 μm</td>
</tr>
<tr>
<td>Initial proton bunch length</td>
<td>0.55 m</td>
</tr>
<tr>
<td>Initial antiproton bunch length</td>
<td>0.45 m</td>
</tr>
<tr>
<td>β-function at IP</td>
<td>0.28 m</td>
</tr>
<tr>
<td>Betatron tunes (Q_x, Q_y)</td>
<td>20.583, 20.585</td>
</tr>
<tr>
<td>Initial luminosity</td>
<td>4.03×10^{32} cm$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>Luminosity lifetime</td>
<td>5 h</td>
</tr>
</tbody>
</table>
Tevatron Run II Integrated Luminosity

Integrated Luminosity 10512.46 (1/pb)

- 2007: 1.3 fb^{-1}
- 2008: 1.8 fb^{-1}
- 2009: 1.9 fb^{-1}
- 2010: 2.47 fb^{-1}
- 2011: 1.2 fb^{-1}

best week: 73 pb^{-1}, Apr 2009
best month: 273 pb^{-1}, Mar 2010
Initial Luminosity and pbar Accumulation Rate

Peak Luminosity (1/microbarn/sec)
- Max: 402.4
- Most Recent: 389.5

Average Pbar Accumulation Rate

Collider Fill Cycle for Store 2511 in 2003

- Total intensity
- Proton intensity
- Pbar intensity
- Pbar bunch no.13

Store 2511 $L_0 = 0.4 \times 10^{32}$
Collider Fill Cycle for the Record Store

- Total intensity
- Proton intensity
- Pbar intensity
- Pbar bunch no. 13

Record Store 7747 $L_0=4 \times 10^{32}$
Contributions to Luminosity Loss and (Some) Fixes

<table>
<thead>
<tr>
<th>Issue</th>
<th>Fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton lifetime at 150GeV: currently lose 5% protons and 1% antiprotons</td>
<td>Optimization of sextupoles</td>
</tr>
<tr>
<td></td>
<td>Machine impedance (Lambertsons)</td>
</tr>
<tr>
<td></td>
<td>Improved injection helix</td>
</tr>
<tr>
<td>Beam losses on ramp:</td>
<td>Better helix</td>
</tr>
<tr>
<td>now ~2%</td>
<td>Improved coupling (repaired all 800 dipoles)</td>
</tr>
<tr>
<td></td>
<td>Improved instrumentation</td>
</tr>
<tr>
<td>Beam losses in squeeze:</td>
<td>Better helix</td>
</tr>
<tr>
<td>now 2% protons and <1% pbars</td>
<td>Collimation (2010)</td>
</tr>
<tr>
<td></td>
<td>Improved aperture</td>
</tr>
<tr>
<td>β^* and beam separation</td>
<td>Better lattice modeling</td>
</tr>
<tr>
<td>Luminosity lifetime: dominated by luminous losses, IBS. Beam-beam ~5%</td>
<td>Better helix</td>
</tr>
<tr>
<td></td>
<td>New proton working point</td>
</tr>
<tr>
<td></td>
<td>Second order chromaticity</td>
</tr>
<tr>
<td>Reliability: in FY2010 averaged 120 store hours/week (71%)</td>
<td>cryo, controls, TEL, orbit stabilization, collimation, etc.</td>
</tr>
</tbody>
</table>
Highlights of the Last Two Years

- Recycler storage efficiency
- Proton scraping in Main Injector
- Quench statistics and Collimation in the squeeze
- Operations strategy
Recycler Ring (RR)

- 8 GeV antiproton storage ring located in the Main Injector (MI) tunnel

 - Accumulates antiprotons coming from the Accumulator and prepares the beam to be sent to the MI/Tevatron
 - Increases 6D phase density of antiprotons by a factor of 50
 - Permanent magnet-based
 - Every 40-50 min, $(15 - 25) \cdot 10^{10}$ antiprotons are transferred from Accumulator through MI in three parcels
 - Became possible with improved electron cooling and streamlined procedures
 - Initially: $(40-50) \cdot 10^{10}$ antiprotons every 75-90 min

Typical Recycler accumulation cycle

At $N_p \sim (350 - 500) \cdot 10^{10}$, antiprotons are transferred to MI for acceleration and injection into Tevatron

Circumference: 3310.4 m
Momentum: 8.889 GeV/c
Vacuum: $< 5 \cdot 10^{-10}$ Torr
Life time: up to 1000 hour
Max. number of stored antiprotons: 608×10^{10}
Tunes (H/V): 25.464/24.468
Equipped with stochastic and electron cooling
Recycler Ring operation in 2009-2011

- The average life time improved to 200 - 400 h for \(N_p = (300-525) \times 10^{10} \)
 - Procedures, improved RF manipulations, improved vacuum
 - The average life time is determined primarily by losses right after injections
 - In steady state, >500 h at \(500 \times 10^{10} \)
 - Typical 'storage efficiency' is ~ 93% (up 3-5%)
 - Includes losses due to transfers and the finite RR life time

- Brightness of the antiproton beam is limited by a transverse instability
 - The threshold depends on the longitudinal tails (See WEP114)

- Additional flexibility
 - Capability to extract only a portion of the beam into the same 36 bunches

Also see WEP113, WEP228

Average life time in RR vs the number of antiprotons in Aug 2010 – Feb 2011

Typical oscillogram of an instability in RR.

Courtesy L.Prost
Proton Scraping in MI

Momentum scraping of proton beam at injection in MI
3–4% increase of initial luminosity, better losses

Courtesy C. Gattuso
Quench Statistics

- Percentage
 - Ramp: 16
 - Squeeze: 41
 - Collisions: 68
- 32 quenches in squeeze were caused by beam dynamics related losses

- Total number of stores 1200 - one in 40 lost in squeeze, between Apr. 09-Mar.11 14 of 372 lost in squeeze - one in 30
- A quench during squeeze accounts for ~8pb⁻¹ - lost ~3% integral
 - Integrated doses lead to equipment failures at detectors
A single proton collimator + orbit control reduced losses. Since implementation in Dec. 2010 114 stores - no quenches in squeeze
Operations Strategy

- Model of collider operation
 - Antiproton transmission efficiencies
 - Stacking rate in Accumulator as function of stack size
 - Pbar lifetime in Recycler
 - Tevatron initial luminosity and luminosity decay
 - Shot setup time
Optimization of Store Duration

- The model was used to determine the optimal operating parameters to maximize luminosity integral
 - Emphasis on repeatability of stores
 - Model allows to work around exceptions: schedule accesses, studies to minimize impact
Accelerator Physics Studies

- Stable machine allows time for studies of accelerator physics
- There is strong interest from Fermilab, CERN, LARP, BNL to use Tevatron for beam physics studies
 - A workshop was held in 2010 to collect the list of topics
 - Currently a program is being generated
- Some experiments are in progress (were done) parasitically or using end-of-store dedicated time:
 - Dancing bunches
 - Ghost modes
 - Beam-beam compensation
 - Crystal collimation
 - Hollow electron beam collimator
Dancing Bunches

LLD threshold tune shifts

\[F(I) \propto \sqrt{I_{\text{lim}} - I} \]

\[F(I) \propto (I_{\text{lim}} - I)^2 \]

\[F(I) \propto (I_{\text{lim}} - I)^2 \left[1 + \cos \left(\frac{8\pi I}{I_{\text{lim}}} \right) \right] \]

A. Burov talk MOODS4
experimental confirmation WEP116
“Ghost” Modes

- Ghost lines were present in the Shottky spectra since the early days of Run II
 - They are not stable in time, oscillating with period 15 min to hours
 - Move by as much as 0.02
 - Estimated effect on emittance growth is 0.06π mm mrad/h
Tevatron Electron Lenses

- **e- beam energy**: < 10 kV
- **Peak e- current**: < 3 A
- **Solenoid B-field**: 30 kG
- **Gun B-field**: 3 kG
- **e- beam radius (SEFT)**: 2.3 mm
- **Interaction length**: 2 m
- **TEL-1 β_x/β_y**: 95/32 m
- **TEL-2 β_x/β_y**: 66/160 m

Electron Lens for Beam-Beam Compensation

- With Gaussian profile electron beam overlapping with antiprotons, a number of studies were performed
 - Tune shift and tune spread measurements
 - Effect of misalignments
 - Tune scans to determine the effect of TEL on resonances
Collimation with Hollow Electron Lens

- Use hollow profile electron beam as slow diffuser to clean halo particles.

G. Stancari et al., MOP147

Kick $0.2 \, \mu\text{rad}$
Collimation with Hollow Electron Lens

- Hollow e- gun was designed, built and tested
- Installed in TEL-2 in 2010
- First experiments on collimation are successful: demonstrate scraping beam intensity without negative effect on luminosity!

Particle removal is detectable and smooth

- 2.5% /h
- 0.32% /h

-<i>4.5σ hole</i>
-<i>5σ hole</i>

-<i>-0.57% luminosity vs. -1.4% intensity</i>
-<i><0.05% luminosity vs. -0.39% intensity</i>

Halo scraping, small or no effect on core!
Collimation with Bent Crystals

- Deflect halo particles by a large angle using bent crystals
 - Repeated Volume Reflections in an array of parallel crystals results in larger deflection, e.g. at $E=1$ TeV:

One crystal $\theta_{VR} = 8 \mu$rad; $\theta_{bend} = 200 \mu$rad

8 crystals $\theta_{VR} = 8 \times 8 = 64 \mu$rad

Crystal produced by: IHEP

8 Crystal “Strips” separated by “groves”
Summary

- Numerous improvements in the Tevatron collider complex allowed stable operation at initial luminosities of $3.5\times10^{32}\text{ cm}^{-2}\text{s}^{-1}$
- The weekly integrated luminosity exceeded 70 pb$^{-1}$, average ~50 pb$^{-1}$
- For a 25 year-old machine, the Tevatron is exceptionally reliable averaging 110-120 hours of HEP time per week
- Recent operational improvements targeted mostly reliability and efficiency of operations and account for approx. 10-13% of luminosity
- Tevatron is a test bed for many accelerator physics experiments
 - Beam collimation
 - Beam-beam effects and their compensation
 - Beam dynamics
 - Instrumentation and optics