‡ Fermilab

Results of head-on beam-beam compensation studies at the Tevatron

Giulio Stancari and Alexander Valishev Fermi National Accelerator Laboratory

- Background
- Tevatron electron lenses
- Beam alignment

- Incoherent tune spectra
- Transverse coherent modes
- Tune scans

Thanks to C. Montag and W. Fischer (BNL) for their support and insights

2011 Particle Accelerator Conference (PAC11) New York, March 28 - April 1, 2011

Background

Nonlinear forces between colliding beams limit the performance of colliders

Is it possible to mitigate these beam-beam effects with a low-energy electron beam?

Tevatron electron lens (TEL)

Shiltsev et al., PRSTAB 2, 071001 (1999)

Beam-beam compensation with electron lenses

Pulsed electron lenses with <u>flat profiles</u> can <u>shift the tunes</u> of individual bunches by different amounts and reduce the effects of long-range collisions

Shiltsev et al., PRL 99, 244801 (2007) Shiltsev et al., NJP 10, 043042 (2008) Shiltsev et al., PRSTAB 11, 103501 (2008)

Can a Gaussian electron profile mitigate the nonlinear head-on beambeam forces acting on antiprotons?

Can the tune footprint be reduced?

Linear beam-beam parameter for antiprotons due to electrons

$$\xi_e = -\frac{N_e r_p \beta (1+\beta_e)}{4\pi \gamma_p \sigma_e^2}$$

Valishev et al., IPAC10, TUPD070 (2010)

G. Stancari (Fermilab)

Results of head-on beam-beam compensation studies at the Tevatron PAC11 : 28 Mar 2011 3

Objectives

- <u>Comment #1</u>: Head-on compensation requires
- geometrical configuration similar to
- interaction point (transverse and longitudinal)
- no dispersion
- ► correct betatron phase advance (integer multiple of π)

<u>Comment #2</u>: After the introduction of electron cooling in the Recycler Ring, head-on beam-beam on antiprotons is practically linear in the Tevatron

Purpose of this research:

- Investigate technical and operational feasibility
- Observe the **effect of Gaussian electron beams** on lifetimes, emittances, tunes
- Provide experimental basis for simulation codes in view of planned application to RHIC at BNL (next talk, poster THP055)

The 10.8-mm Gaussian electron gun

G. Stancari (Fermilab) Results of head-on beam-beam compensation studies at the Tevatron PA

Layout of the second Tevatron electron lens (TEL2)

Lattice parameters	CDF IP	DZero IP	TEL2
Amplitude functions (m)	0.30, 0.30	0.50, 0.50	68, 153
Dispersion (m)	0,0	0,0	1.2, -1.0
Betatron phase (2π)	6.84	13.85	3.22

Protons and antiprotons circulate in the same beam pipe. At TEL2, separation is 6 mm (both horiz. and vert.).

In our experiments, electrons were aligned with antiprotons.

G. Stancari (Fermilab) Results of head-on beam-beam compensation studies at the Tevatron PAC11: 28 Mar 2011 6

Observations in electron beam position scan

(1) No increase in losses with nominal tunes
(2) With tunes lowered by 0.003 (towards 7th order resonance):
- good BPM alignment and no e⁻/p⁻ systematic difference
- double hump structure

G. Stancari (Fermilab) Results of head-on beam-beam compensation studies at the Tevatron PAC11 : 28 Mar 2011

Incoherent tune spectrum vs. electron beam current

Schottky spectra during dedicated antiproton-only store.

As expected, collisions with electrons widen the tune spectrum.

Calculated linear

due to electrons ξ_e

8

Transverse coherent modes in regular collider store

G. Stancari (Fermilab) Results of head-on beam-beam compensation studies at the Tevatron PAC11:28

Dedicated 3-on-3 stores

Attempted 2 special 3-on-3 stores to eliminate long-range forces: demonstration of head-on beam-beam compensation in the Tevatron?

<u>1st store</u>: proton emittance blowup at collisions before study, unusable <u>2nd store</u>: smaller proton blowup, expected benefit negligible, used for tune scans and code benchmarking

Lifetrac simulation of decay rates and emittance growth in diagonal tune scan

Dedicated 3-on-3 stores

Measurement of decay rates of antiproton bunches during diagonal tune scan

Average tune

- Electron sizes could not be matched with protons, beam-beam too small
- Still, no adverse effects in stable region; not enough to see improvement
- Useful for comparison with numerical simulations

G. Stancari (Fermilab) Results of head-on beam-beam compensation studies at the Tevatron PAC11: 28 Mar 2011 11

Conclusions

- Studied basic properties of head-on beam-beam compensation with Gaussian electron lenses in the Tevatron
- Alignment of electrons with circulating beam is reliable
- With aligned beams, no instabilities or emittance growth
- ▶ No adverse effects on antiprotons at high intensity and luminosity
- Observed tune shift and tune spread generated by electron beam
- ▶ Measured lifetimes vs. tune in dedicated 3-on-3 store
- Tevatron not ideal for direct demonstration of concept
- Collected data for code benchmarking and for planned application of electron lenses to RHIC (next talk, poster THP055)

Thanks for your attention