Author: Montag, C.
Paper Title Page
MOOCN3 RHIC Polarized Proton Operation 41
 
  • H. Huang, L. A. Ahrens, I.G. Alekseev, E.C. Aschenauer, G. Atoian, M. Bai, A. Bazilevsky, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, A. Dion, K.A. Drees, W. Fischer, C.J. Gardner, J.W. Glenn, X. Gu, M. Harvey, T. Hayes, L.T. Hoff, R.L. Hulsart, J.S. Laster, C. Liu, Y. Luo, W.W. MacKay, Y. Makdisi, M. Mapes, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, W.B. Schmidke, V. Schoefer, F. Severino, D. Smirnov, K.S. Smith, D. Steski, D. Svirida, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
RHIC operation as the polarized proton collider presents unique challenges since both luminosity and spin polarization are important. With longitudinally polarized beams at the experiments, the figure of merit is LP4. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system has been installed to improve longitudinal match at injection and to increase luminosity. The beam dumps were upgraded to allow for increased bunch intensities. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control has also been improved this year. Additional efforts were put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point was chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper.
 
slides icon Slides MOOCN3 [2.331 MB]  
 
MOP209 Proposed Scattered Electron Detector System as One of the Beam Overlap Diagnostic Tools for the New RHIC Electron Lens 489
 
  • P. Thieberger, E.N. Beebe, C. Chasman, W. Fischer, D.M. Gassner, X. Gu, R.C. Gupta, J. Hock, R.F. Lambiase, Y. Luo, M.G. Minty, C. Montag, M. Okamura, A.I. Pikin, Y. Tan, J.E. Tuozzolo, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
An electron lens for head-on beam-beam compensation planned for RHIC requires precise overlap of the electron and proton beams which both can have down to 0.3 mm rms transverse radial widths along the 2m long interaction region. Here we describe a new diagnostic tool that is being considered to aid in the tuning and verification of this overlap. Some of ultra relativistic protons (100 or 250 GeV) colliding with low energy electrons (2 to 10 keV) will transfer sufficient transverse momentum to cause the electrons to spiral around the magnetic guiding field in a way that will make them detectable outside of the main solenoid. Time-of-flight of the halo electron signals will provide position-sensitive information along the overlap region. Scattering cross sections are calculated and counting rate estimates are presented as function of electron energy and detector position.
 
 
THP061 Mimicking Bipolar Sextupole Power Supplies for Low-energy Operations at RHIC 2241
 
  • C. Montag, D. Bruno, A.K. Jain, G. Robert-Demolaize, T. Satogata, S. Tepikian
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
RHIC operated at energies below the nominal ion injection energy of E=9.8 GeV/u in 2010. Earlier test runs and magnet measurements indicated that all defocusing sextupole unipolar power supplies should be reversed to provide the proper sign of chromaticity. However, vertical chromaticity at E=3.85 GeV/u with this power supply configuration was still not optimal. This uncertainty inspired a new machine configuration where only half of the defocusing sextupole power supplies were reversed, taking advantage of the flexibility of the RHIC nonlinear chromaticity correction system to mimic bipolar sextupoles. This configuration resulted in a 30 percent luminosity gain and eliminated the need for further polarity changes for later 2010 low energy physics operations. Here we describe the background to this problem, operational experience, and RHIC online model changes to implement this solution.
 
 
THP062 Beam Experiments Related to the Head-on Beam-beam Compensation Project at RHIC 2243
 
  • C. Montag, M. Bai, K.A. Drees, W. Fischer, A. Marusic, G. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Beam experiments have been performed in RHIC to determine some key parameters of the RHIC electron lenses, and to test the capability of verifying lattice modifications by beam measurements. We report the status and recent results of these experiments.
 
 
THP063 Lattice Design for Head-on Beam-Beam Compensation at RHIC 2246
 
  • C. Montag
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Electron lenses for head-on beam-beam compensation will be installed in IP 10 at RHIC. Compensation of the beam-beam effect experienced at IP 8 requires betatron phase advances of ∆ψ=k·π between the proton-proton interaction point at the IP 8, and the electron lens at IP 10. This paper describes the lattice solutions for both the BLUE and the YELLOW ring to achieve this goal.
 
 
THP081 Beam Lifetime and Limitations during Low-Energy RHIC Operation 2285
 
  • A.V. Fedotov, M. Bai, M. Blaskiewicz, W. Fischer, D. Kayran, C. Montag, T. Satogata, S. Tepikian, G. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work performed under contract No. DE-AC02-98CH10886 with the auspices of the DoE of United States.
The low-energy physics program at the Relativistic Heavy Ion Collider (RHIC), motivated by a search for the QCD phase transition critical point, requires operation at low energies. At these energies, large nonlinear magnetic field errors and large beam sizes produce low beam lifetimes. A variety of beam dynamics effects such as Intrabeam Scattering (IBS), space charge and beam-beam forces also contribute. All these effects are important to understand beam lifetime limitations in RHIC at low energies. During the low-energy RHIC physics run in May-June 2010 at beam γ=6.1 and γ=4.1, gold beam lifetimes were measured for various values of space-charge tune shifts, transverse acceptance limitation by collimators, synchrotron tunes and RF voltage. This paper summarizes our observations and initial findings.
 
 
MOP268 RHIC 10 Hz Global Orbit Feedback System 609
 
  • R.J. Michnoff, L. Arnold, C. Carboni, P. Cerniglia, A.J. Curcio, L. DeSanto, C. Folz, C. Ho, L.T. Hoff, R.L. Hulsart, R. Karl, C. Liu, Y. Luo, W.W. MacKay, G.J. Mahler, W. Meng, K. Mernick, M.G. Minty, C. Montag, R.H. Olsen, J. Piacentino, P. Popken, R. Przybylinski, V. Ptitsyn, J. Ritter, R.F. Schoenfeld, P. Thieberger, J.E. Tuozzolo, A. Weston, J. White, P. Ziminski, P. Zimmerman
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Vibrations of the cryogenic triplet magnets at the Relativistic Heavy Ion Collider (RHIC) are suspected to be causing the beam perturbations observed at frequencies around 10 Hz. Several solutions to counteract the effect have been considered in the past, including reinforcing the magnet base support assembly, a mechanical servo feedback system, and a local beam feedback system at each of the two experimental areas. However, implementation of the mechanical solutions would be expensive, and the local feedback system was insufficient since perturbation amplitudes outside the experimental areas were still problematic. A global 10 Hz orbit feedback system is currently under development at RHIC consisting of 36 beam position monitors (BPMs) and 12 small dedicated dipole corrector magnets in each of the two counter-rotating rings. A subset of the system consisting of 8 BPMs and 4 corrector magnets in each ring was installed and successfully tested during the RHIC 2010 run; and the complete system is being installed for the 2011 run. A description of the overall system architecture and results with beam will be discussed.
 
 
THP054 Medium Energy Heavy Ion Operations at RHIC 2220
 
  • K.A. Drees, L. A. Ahrens, M. Bai, J. Beebe-Wang, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, C. Carlson, R. Connolly, T. D'Ottavio, W. Fischer, W. Fu, D.M. Gassner, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, P.F. Ingrassia, N.A. Kling, M. Lafky, J.S. Laster, R.C. Lee, V. Litvinenko, Y. Luo, W.W. MacKay, M. Mapes, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, F.C. Pilat, V. Ptitsyn, G. Robert-Demolaize, T. Roser, P. Sampson, T. Satogata, V. Schoefer, C. Schultheiss, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, M. Wilinski, A. Zaltsman, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n.
 
 
THP055 Status of the RHIC Head-on Beam-beam Compensation Project 2223
 
  • W. Fischer, M. Anerella, E.N. Beebe, D. Bruno, D.M. Gassner, X. Gu, R.C. Gupta, J. Hock, A.K. Jain, R.F. Lambiase, C. Liu, Y. Luo, M. Mapes, T.A. Miller, C. Montag, B. Oerter, M. Okamura, A.I. Pikin, D. Raparia, Y. Tan, R. Than, P. Thieberger, J.E. Tuozzolo, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
Two electron lenses are under construction for RHIC to partially compensate the head-on beam-beam effect in order to increase both the peak and average luminosity. The final design of the overall system is reported as well as the status of the component design, acquisition, and manufacturing.
 
 
THP064 The Dipole Corrector Magnets for the RHIC Fast Global Orbit Feedback System 2249
 
  • P. Thieberger, L. Arnold, C. Folz, R.L. Hulsart, A.K. Jain, R. Karl, G.J. Mahler, W. Meng, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, V. Ptitsyn, J. Ritter, L. Smart, J.E. Tuozzolo, J. White
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The recently completed RHIC fast global orbit feedback system uses 24 small “window-frame” horizontal dipole correctors. Space limitations dictated a very compact design. The magnetic design and modelling of these laminated yoke magnets is described as well as the mechanical implementation, coil winding, vacuum impregnation, etc. Test procedures to determine the field quality and frequency response are described. The results of these measurements are presented and discussed. A small fringe field from each magnet, overlapping the opposite RHIC ring, is compensated by a correction winding placed on the opposite ring’s magnet and connected in series with the main winding of the first one. Results from measurements of this compensation scheme are shown and discussed.
 
 
THP100 Structure and Design of the Electron Lens for RHIC 2309
 
  • A.I. Pikin, J.G. Alessi, M. Anerella, E.N. Beebe, W. Fischer, D.M. Gassner, X. Gu, R.C. Gupta, J. Hock, R.F. Lambiase, Y. Luo, C. Montag, M. Okamura, Y. Tan, P. Thieberger, J.E. Tuozzolo, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Two electron lenses for a head-on beam-beam compensation are being planned for RHIC; one for each circulating proton beam. The transverse profile of the electron beam will be Gaussian up to a maximum radius of re=3σ. Simulations and design of the electron gun with Gaussian radial emission current density profile and of the electron collector are presented. Ions of the residual gas generated in the interaction region by electron and proton beams will be removed by an axial gradient of the electric field towards the electron collector. A method of optical observation the transverse profile of the electron beam is described.