Author: Legg, R.A.
Paper Title Page
THP176 Progress Toward the Wisconsin Free Electron Laser 2444
 
  • J. Bisognano, R.A. Bosch, D. Eisert, M.V. Fisher, M.A. Green, K. Jacobs, K.J. Kleman, J. Kulpin, G.C. Rogers
    UW-Madison/SRC, Madison, Wisconsin, USA
  • J.E. Lawler, D. Yavuz
    UW-Madison/PD, Madison, Wisconsin, USA
  • R.A. Legg
    JLAB, Newport News, Virginia, USA
 
  Funding: NSF Award No. DMR-0537588 DOE Award No. DE-SC0005264
The University of Wisconsin-Madison/Synchrotron Radiation Center is advancing its design for a seeded VUV/soft X-ray Free Electron Laser facility called WiFEL. To support this vision of an ultimate light source, we are pursuing a program of strategic R&D addressing several crucial elements. This includes development of a high repetition rate, VHF superconducting RF electron gun, R&D on photocathode materials by ARPES studies, and evaluation of FEL facility architectures (e.g., recirculation, compressor scenarios, CSR dechirping, undulator technologies) with the specific goal of cost containment. Studies of high harmonic generation for laser seeding are also planned.
 
 
THP171 Demonstration of 3D Effects with High Gain and Efficiency in a UV FEL Oscillator 2429
 
  • S.V. Benson, G.H. Biallas, K. Blackburn, J.R. Boyce, D.B. Bullard, J.L. Coleman, C. Dickover, D. Douglas, F.K. Ellingsworth, P. Evtushenko, C.W. Gould, J.G. Gubeli, D. Hardy, C. Hernandez-Garcia, K. Jordan, J.M. Klopf, J. Kortze, R.A. Legg, M. Marchlik, S.W. Moore, G. Neil, T. Powers, D.W. Sexton, M.D. Shinn, C. Tennant, R.L. Walker, A.M. Watson, G.P. Williams, F.G. Wilson, S. Zhang
    JLAB, Newport News, Virginia, USA
 
  Funding: This work was supported by U.S. DOE Contract No. DE-AC05-84-ER40150, the Air Force Office of Scientific Research, DOE Basic Energy Sciences, the Office of Naval Research, and Joint Technology Office
We report on the performance of a high gain UV FEL oscillator operating on an energy recovery linac at Jefferson Lab. The high brightness of the electron beam leads to both gain and efficiency that cannot be reconciled with a one-dimensional model. Three-dimensional simulations do predict the performance with reasonable precision. Gain in excess of 100% per pass and an efficiency close to 1/2NW, where NW is the number of wiggler periods, is seen. The laser mirror tuning curves currently permit operation in the wavelength range of 438 to 362 nm. Another mirror set allows operation at longer wavelengths in the red with even higher gain and efficiency.
 
 
THP172 Operation and Commissioning of the Jefferson Lab UV FEL using an SRF Driver ERL 2432
 
  • C. Tennant, S.V. Benson, G.H. Biallas, K. Blackburn, J.R. Boyce, D.B. Bullard, J.L. Coleman, C. Dickover, D. Douglas, F.K. Ellingsworth, P. Evtushenko, C.W. Gould, J.G. Gubeli, F.E. Hannon, D. Hardy, C. Hernandez-Garcia, K. Jordan, J.M. Klopf, J. Kortze, M. Marchlik, S.W. Moore, G. Neil, T. Powers, D.W. Sexton, M.D. Shinn, R.L. Walker, G.P. Williams, F.G. Wilson, S. Zhang
    JLAB, Newport News, Virginia, USA
  • R.A. Legg
    UW-Madison/SRC, Madison, Wisconsin, USA
 
  Funding: Supported by the US Dept. of Energy under DoE contract number DE-AC05-060R23177.
We describe the operation and commissioning of the Jefferson Lab UV FEL using a CW SRF ERL driver. Based on the same 135 MeV linear accelerator as the Jefferson Lab 10 kW IR Upgrade FEL, the UV driver ERL uses a bypass geometry to provide transverse phase space control, bunch length compression, and nonlinear aberration compensation necessitating a unique set of commissioning and operational procedures. Additionally, a novel technique to initiate lasing is described. To meet these constraints and accommodate a challenging installation schedule, we adopted a staged commissioning plan with alternating installation and operation periods. This report addresses these issues and presents operational results from on-going beam operations.