Paper | Title | Page |
---|---|---|
MOP012 | Ultra-High Gradient Compact S-Band Accelerating Structure | 127 |
|
||
Funding: Dept. of Energy DE-SC0000866 In this paper, we present the radio-frequency design of the DECA (Doubled Energy Compact Accelerator) S-band accelerating structure operating in the pi-mode at 2.856 GHz, where RF power sources are commonly available. The development of the DECA structure will offer an ultra-compact drop-in replacement for a conventional S-band linac in research and industrial applications such as drivers for compact light sources, medical and security systems. The electromagnetic design has been performed with the codes SuperFish and HFSS. The choice of the single cell shape derives from an optimization process aiming to maximize RF efficiency and minimize surface fields at very high accelerating gradients, i.e. 50 MV/m and above. Such gradients can be achieved utilizing shape-optimized elliptical irises, dual-feed couplers with the "fat-lip" coupling slot geometry, and specialized fabrication procedures developed for high gradient structures. The thermal-stress analysis of the DECA structure is also presented. * V. Dolgashev, "Status of X-band Standing Wave Structure Studies at SLAC", SLAC-PUB-10124, (2003). ** C. Limborg et al., "RF Design of LCLS Gun", LCLS-TN-05-03 (2005). |
||
WEODS4 | High Gradient Normal Conducting Radio-Frequency Photoinjector System for Sincrotrone Trieste | 1504 |
|
||
Radiabeam Technologies is leading a multi-organizational collaboration by UCLA, INFN and MATS to deliver a high gradient normal conducting radio frequency (NCRF) 1.6 cell photoinjector system to the Sincrotrone Trieste facility. Designed to operate with a 120MV/m accelerating gradient, this dual feed, fat lipped racetrack coupler design is modeled after the LCLS photoinjector with a novel demountable cathode which permits cost effective cathode exchange. Full overview of the project to date will be discussed along with basic, design, engineering, manufacturing and RF test results. | ||
![]() |
Slides WEODS4 [3.186 MB] | |
THP050 | Normal Conducting Radio Frequency X-band Deflecting Cavity Fabrication and Validation | 2211 |
|
||
An X-band Traveling wave Deflector mode cavity (XTD) has been developed at Radiabeam Technologies to perform longitudinal characterization of the sub-picosecond ultra-relativistic electron beams. The device is optimized for the 100 MeV electron beam parameters at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory, and is scalable to higher energies. The XTD is designed to operate at 11.424 GHz, and features short filling time, femtosecond resolution, and a small footprint. RF design, fabrication and RF validation and tuning will be presented. | ||
THP051 | An Overview of Normal Conducting Radio Frequency Projects and Manufacturing Capabilities at Radiabeam Technologies, LLC | 2214 |
|
||
Radiabeam Technologies is currently designing, engineering and fabricating 8 different Normal Conducting Radio Frequency (NCRF) accelerating and diagnostic structures. These NCRF programs include compact X-band industrial systems, laboratory grade NCRF photoinjectors, deflecting cavities and High-Gradient structures. Nearly all aspects of these NCRF structures’ lifecycle are performed in house, including design, 3D electromagnetic and thermomechanical modeling, engineering, fabrication, cleaning and RF cold testing, tuning, and RF power testing. An overview of these varied projects along with references to more detailed publications presented in this conference are provided. Details concerning specific processes applicable to all of the above mentioned RF projects are also discussed. | ||