Author: Chao, A.
Paper Title Page
TUOCN2 Spin-Manipulating Polarized Deuterons 747
 
  • V.S. Morozov
    JLAB, Newport News, Virginia, USA
  • A. Chao
    SLAC, Menlo Park, California, USA
  • F. Hinterberger
    Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, Bonn, Germany
  • A.M. Kondratenko
    GOO Zaryad, Novosibirsk, Russia
  • A.D. Krisch, M.A. Leonova, R.S. Raymond, D.W. Sivers, V.K. Wong
    University of Michigan, Spin Physics Center, Ann Arbor, MI, USA
  • E.J. Stephenson
    IUCF, Bloomington, Indiana, USA
 
  Funding: This research was supported by grants from the German BMBF Science Ministry, its JCHP-FFE program at COSY and the US DOE.
Spin dynamics of polarized deuteron beams near depolarization resonances, including a new polarization preservation concept based on specially-designed multiple resonance crossings, has been tested in a series of experiments in the COSY synchrotron. Intricate spin dynamics with sophisticated pre-programmed patterns as well as effects of multiple crossings of a resonance were studied both theoretically and experimentally with excellent agreement. Possible applications of these results to preserve, manipulate and spin-flip polarized beams in synchrotrons and storage rings are discussed.
 
slides icon Slides TUOCN2 [4.921 MB]  
 
WEP044 Emittance and Phase Space Exchange 1576
 
  • D. Xiang, A. Chao
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the US DOE under Contract No. DE-AC02-76SF00515.
Alternative chicane-type beamlines are proposed for exact emittance exchange between horizontal phase space (x,x') and longitudinal phase space (z, delta). Methods to achieve exact phase space exchanges, i.e. mapping x to z, x' to delta, z to x and delta to x' are suggested. Some applications of the phase space exchanger and the feasibility of an emittance exchange experiment with the proposed beamline at SLAC are discussed.
 
 
THP114 Status of the PEP-X Light Source Design Study 2336
 
  • R.O. Hettel, K.L.F. Bane, K.J. Bertsche, Y. Cai, A. Chao, X. Huang, Y. Jiao, C.-K. Ng, Y. Nosochkov, A. Novokhatski, T. Rabedeau, C.H. Rivetta, J.A. Safranek, G.V. Stupakov, L. Wang, M.-H. Wang, L. Xiao
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported in part by Department of Energy Contract DE-AC02-76SF00515 and Office of Basic Energy Sciences, Division of Chemical Sciences.
The SLAC Beam Physics group and collaborators continue to study options for implementing a near diffraction-limited ring-based light source in the 2.2-km PEP-II tunnel that will serve the SSRL scientific program in the future. The study team has completed the baseline design for a 4.5-GeV storage ring having 160-pm-rad emittance with stored beam current of 1.5 A, providing >1022 brightness for multi-keV photon beams from 3.5-m undulator sources. The team is now investigating possible 5-GeV ERL configurations which, similar to the Cornell and KEK ERL plans, would have ~30 pm-rad emittance with 100 mA current, and ~10 pm-rad emittance with 25 mA or less. In the next year, a diffraction-limited storage ring using on-axis injection in order to reach 30 pm-rad or less emittance will be investigated. An overview of the PEP-X design study and SSRL’s plans for defining the performance parameters that will guide the choice of implementation options is presented.
 
 
TUOAN1 SuperB: Next-Generation e+e B-factory Collider 690
 
  • A. Novokhatski, K.J. Bertsche, A. Chao, Y. Nosochkov, J.T. Seeman, M.K. Sullivan, U. Wienands, W. Wittmer
    SLAC, Menlo Park, California, USA
  • M.A. Baylac, O. Bourrion, N. Monseu, C. Vescovi
    LPSC, Grenoble, France
  • S. Bettoni
    CERN, Geneva, Switzerland
  • M.E. Biagini, R. Boni, M. Boscolo, T. Demma, A. Drago, M. Esposito, S. Guiducci, M.A. Preger, P. Raimondi, S. Tomassini, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • A.V. Bogomyagkov, E.B. Levichev, S.A. Nikitin, P.A. Piminov, D.N. Shatilov, S.V. Sinyatkin, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  • B. Bolzon, L. Brunetti, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux, France
  • A. Chancé
    CEA, Gif-sur-Yvette, France
  • P. Fabbricatore, S. Farinon, R. Musenich
    INFN Genova, Genova, Italy
  • S.M. Liuzzo, E. Paoloni
    University of Pisa and INFN, Pisa, Italy
  • I.N. Okunev
    BINP, Novosibirsk, Russia
  • F. Poirier, C. Rimbault, A. Variola
    LAL, Orsay, France
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515.
The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 1036 cm-2 s-1. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Y(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low ßy* without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron-radiation applications.
 
slides icon Slides TUOAN1 [9.378 MB]