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Abstract

Alternative chicane-type beam lines are proposed for ex-
act emittance exchange between horizontal phase space
(x, x′) and longitudinal phase space (z, δ). Methods to
achieve exact phase space exchanges, i.e. mapping x to
z, x′ to δ, z to x and δ to x′ are suggested. Methods to
mitigate the thick-lens effect of the transverse cavity on
emittance exchange are discussed. Some applications of
the phase space exchanger and the feasibility of an emit-
tance exchange experiment with the proposed chicane-type
beam line at SLAC are discussed.

EMITTANCE EXCHANGE

Consider a planar lattice that allows coupling between x-
and z-motions. Let the coordinate vector be (x, x′, z, δ)T .
Consider a transport section whose transport matrix from
entrance to exit is [

A B
C D

]
, (1)

where A, B, C and D are 2 × 2 matrices. Exact emittance
exchange (EEX) is achieved when the elements in A and D
are all zeros. This special transport section has the property
that it cleanly exchanges the (x, x′) and the (z, δ) degrees
of freedom.

The first beam line [1] proposed for EEX is shown in
Fig. 1. It consists of a simple 4-bend chicane and a trans-
verse cavity.

Figure 1: Cornacchia-Emma’s EEX beam line.

The transfer matrix for the whole beam line is R1 =
Rd−RL2RkRL1Rd+, where Rd+ and Rd− are the transfer
matrices for the first and second half of the chicane, RL1

and RL2 are the transfer matrices for the drifts before and
after the transverse cavity, and Rk is the transverse cavity
transfer matrix. Partial EEX is achieved when ηk = 1,
where η is the dispersion in the center of the chicane and
k = 2πeV/λE is the dimensionless deflection strength of
the transverse cavity, V is the deflection voltage, λ is the
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wavelength of the rf field and E is the electron energy.
However, the EEX is not complete in this beam line be-
cause there are non-zero elements in A and D.

An exact exchange optics was later proposed by K.-J.
Kim [2]. Instead of a chicane, the transverse cavity is put
between two identical doglegs. The transfer matrix for this
beam line is R2 = Rd+RL2RkRL1Rd+. Exact EEX is
achieved when ηk = −1. Based on this optics, exper-
iments at FNAL [3] have been performed and others are
being planned at ANL [4].

EEX WITH A CHICANE-TYPE BEAM
LINE

From a practical point of view, EEX with a chicane may
be more desirable because of its simplicity, wide availabil-
ity and minimal perturbation to existing beam lines (e.g. it
does not introduce offset in beam trajectory and turning off
the transverse cavity allows dispersion to return to zero).
But it has a lower performance compared to the two-dogleg
scheme. Here we show that the chicane scheme can achive
exact EEX as well by adding (at least two) quadrupoles.
The scheme is shown in Fig. 2.

Figure 2: A chicane-type exact EEX beam line.

Two quadrupoles together with three drifts are used to
form a negative unity transfer matrix for the transverse
plane. The focal lengths of the two quadrupoles are both f .
With the lengths of the drifts chosen as shown in Fig. 2, the

transfer matrix for the −I section is R−I =
[ −I 0

0 I

]
.

The negative unity section reverses the dispersion of the
first half of the chicane, which is optically equivalent to
flipping the sign of a dogleg. The transfer matrix for the
whole beam line (Rc = Rd−RSRkR−IRd+) when ηk = 1
is,

Rc =

⎡
⎢⎢⎣

0 0 k(L + S) kξ(L + S) − η
0 0 k kξ

−kξ η − kLξ 0 0
−k −kL 0 0

⎤
⎥⎥⎦ ,

(2)
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where L, ξ and η are the length, the momentum compaction
and dispersion of the first half of the chicane. Equation
(2) implies that such a beamline also provides exact ex-
change for the transverse and longitudinal emittances. Fur-
ther analysis shows that the angular to spatial element for
the transfer matrix R−I does not need to be zero for an ex-
act exchange, which indicates that the distance between the
negative unity matrix beam line and the deflecting cavity
can be arbitrary. Also the R−I section can be put down-
stream of the deflecting cavity, for which case exact EEX
can be achieved with ηk = −1.

PHASE SPACE EXCHANGE

It follows from Eq. (2) that zf = −kξxi + (η − kLξ)x′
i

and δf = −kxi − kLx′
i. Therefore, by shaping the ini-

tial transverse phase space (xi, x
′
i), the final longitudinal

phase space distribution (zf , δf) can be tailored. Note it
is easy to shape the x distribution using masks with vari-
ous shapes, but shaping x′ distribution can be technically
challenging. In practice one can always make the final zf

and δf dominated by initial xi other than x′
i, so that shap-

ing x distribution suffices. This is typically achieved by
properly choosing the parameters for the EEX beam line
and increasing the beam size at the entrance to the EEX
beam line. Experiments at FNAL have demonstrated that
one can generate sub-ps bunch train by modulating the ini-
tial transverse distribution with multi-slits [5]. However,
the cross-term dependences of zf and δf on xi and x′

i may
set a limit on how well the phase space can be tailored.

Here we show further that by adding more quadrupoles
upstream and downstream of the beam line in Fig. 2, we
can achieve exact phase space exchange (PSEX), i.e. map-
ping x to z, x′ to δ, z to x, and δ to x′. This allows more
advanced surgery for beam phase space manipulation.

For the system that provides exact EEX, its transfer ma-

trix has the form

[
0 B
C 0

]
. We now add a section consist-

ing of drifts and quadrupoles in front, and another similar
section after the exchanger beam line. Let these two sec-

tions’ 4×4 transport matrices be

[
E 0
0 I

]
and

[
F 0
0 I

]

respectively, where I is a 2×2 unit matrix and E and F are
some other general 2 × 2 matrices with unit determinants.

The total transport matrix is then[
F 0
0 I

] [
0 B
C 0

] [
E 0
0 I

]
=

[
0 FB

CE 0

]
(3)

By lattice matching using the two drift-quadrupole sec-
tions, it is possible to create arbitrary results for FB and
CE to meet the desired lattice properties. For example,
if we design the two drift-quadrupole sections such that
F = B−1 and E = C−1 then we would have a trans-

port line that has a transport matrix

[
0 I
I 0

]
, i.e. it will

map x to z, x′ to δ, z to x, and δ to x′. It is worth pointing
out that mapping x to δ, x′ to z, and/or z to x′, and δ to x

are all also possible, but they will have opposite sign, i.e.
when x is mapped to δ, x′ will be mapped to −z.

Exact phase space exchangemay have wide applications.
For instance, by mapping z exactly to x, the beam’s tem-
poral structures can be easily measured with a view screen.
By mapping x exactly to z, to the first order, one may gen-
erate bunch trains with arbitrary spacing, which might be
beneficial for future FELs [6].

THICK-LENS EFFECTS

The thick-lens transfer matrix of a deflecting cavity is

Rk,thick =

⎡
⎢⎢⎣

1 Lc kLc/2 0
0 1 k 0
0 0 1 0
k kLc/2 k2Lc/4 1

⎤
⎥⎥⎦ , (4)

where Lc is the length of the cavity. When the finite length
of the deflecting cavity is taken into account, EEX as Fig. 2
based on thin-lens magnets is incomplete and the final pro-
jected emittances become

ε2x,z = ε2z0,x0 +
εx0εz0k

2L2
cγx0

16βz0
[ξ2 + (βz0 − αz0ξ)2] (5)

Since the second term in Eq. (5) scales as L2
c , the sim-

plest way to mitigate the thick-lens effect may be to re-
duce the cavity length. In the thin-lens approximation, the
deflecting cavity only introduces x′ − z and x − δ corre-
lation. But when the finite length is taken into account,
it also introduces x′ − x, x′ − δ, z − z and z − δ cor-
relations that lead to non-exact EEX. Intuitively, one can
also reduce the values of x′ and z at the cavity to mitigate
the degradations from these additional correlations. For in-
stance, by minimizing γx0 and letting αz0 = βz0/ξ, the
beam divergence and bunch length at the transverse cavity
can be minimized, which also mimimizes the degradation
from the finite length of the cavity. However, it should be
pointed out that minimizing the bunch length at the cav-
ity may cause serious CSR effect that can significantly de-
grade the EEX performance [2], especially when one tries
to exchange the large transverse emittance with small lon-
gitudinal emittance.

While the thick-lens transfer matrix has non-zero R12,
R13, R42 and R13 elements, analysis shows that the in-
complete EEX is solely caused by the R43 term. Using a
simple rf cavity in the fundamental mode to cancel the lon-
gitudinal acceleration in the transverse cavity may allow
exact EEX when the finite length of the cavity is taken into
account [7].

EEX WITH |ηK| �= 1

In all the beam lines discussed above, EEX requires
|ηk| = 1, where η is the dispersion of the dogleg. This
condition makes EEX difficult to apply for high energy
beams where either a huge dogleg with very large η or a
long transverse cavity with very high voltage is needed to

Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA WEP044

Beam Dynamics and EM Fields

Dynamics 01: Beam Optics (lattices, correction, transport) 1577 C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



satisfy the condition. Here we want to point out that the
dispersion of the dogleg does not necessarily need to match
the strength of the transverse cavity for EEX. We will show
below that by adding telescope beam lines before and after
the transverse cavity, the condition |ηk| = 1 can be relaxed.

Figure 3: Exact EEX beam line with |ηk| < 1.

As shown in Fig. 3, two focusing quadrupoles (green
diamonds) are put upstream of the transverse cavity to
form a telescope that magnifies the beam with a magnifi-
cation ratio M , which also increases the local dispersion
in the transverse cavity to Mη. The transfer matrix is[

R−M 0
0 I

]
, where R−M =

[ −M a
0 −1/M

]
. Af-

ter the transverse cavity, one focusing quadrupole and one
defocusing quadrupole (blue diamond) are used to restore
the beam to its initial size. The transfer matrix for this sec-

tion is

[
R1/M 0

0 I

]
, where R1/M =

[
1/M b

0 M

]
. In

R−M and R1/M , a and b depend on the drift lengths be-
fore and after the quadrupoles, but they do not affect the
condition to achieve exact EEX. It is straightforward to
prove that exact EEX for such a beam line is achieved when
ηk = 1/M . Note Mη is the local dispersion in the trans-
verse cavity, so the the general requirement for EEX that
the dispersion in the transverse cavity should equal to the
inverse of the cavity strength still holds [8].

Note the second term in Eq. (5) scales as k2L2
c ∼ M−4,

therefore by having M > 1, shorter transverse cavity with
lower deflection voltage can be used in EEX which may
greatly mitigate the thick-lens effects. On the other hand,
for given deflection voltage and dispersion of the dogleg,
EEX can be implemented at higher beam energy.

EEX AT NLCTA
A chicane integrated with 12 quadrupoles is available at

the next linear collider test accelerator (NLCTA) at SLAC.
An X-band deflecting cavity, originally installed for heat-
ing the beam slice energy spread to facilitate demonstration
of the echo-enabled harmonic generation technique [9], is
also available. Three of the quadrupoles between the sec-
ond and third dipoles can be used to form the −I section
and an EEX experiment using the chicane-type exchange
scheme is being planned at NLCTA.

Nearly complete EEX with the chicane-type exchanger
beam line at NLCTA, has been simulated with ELEGANT

[10] including the thick-lens effect (Lc = 0.09 m) and
second order optics effects. The initial emittances are
εn,x0 = 3.00 μm, εn,z0 = 0.30 μm and the final emittances
after exchange is εn,x1 = 0.32 μm, εn,z1 = 3.02 μm. The
growth in the final horizontal emittances is mainly from
thick-lens effect and second order effects. CSR has not
been included in this simulation.

Figure 4: Transverse phase space distribution (left plots)
and longitudinal phase space distribution (right plots) be-
fore (top row) and after (bottom row) EEX beam line.

When the telescope beam line is used with M = 3, the
deflection voltage is reduced by a factor of 3, which results
in a final horizontal emittance of εn,x1 = 0.31 μm. Now
the emittance growth is mainly from the second order ef-
fects. We plan to test EEX with |ηk| �= 1 at NLCTA in the
future.
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