Author: Bruhwiler, D.L.
Paper Title Page
MOP067 Vlasov and PIC Simulations of a Modulator Section for Coherent Electron Cooling 235
 
  • G.I. Bell, D.L. Bruhwiler, I.V. Pogorelov, B.T. Schwartz
    Tech-X, Boulder, Colorado, USA
  • Y. Hao, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the US DOE Office of Science, Office of Nuclear Physics, grant numbers DE-SC0000835 and DE-FC02-07ER41499. Resources of NERSC were used under contract No. DE-AC02-05CH11231.
Next generation ion colliders will require effective cooling of high-energy hadron beams. Coherent electron cooling (CEC) can in principle cool relativistic hadron beams on orders-of-magnitude shorter time scales than other techniques. We present Vlasov-Poisson and delta-f particle-in-cell (PIC) simulations of a CEC modulator section. These simulations correctly capture the subtle time and space evolution of the density and velocity wake imprinted on the electron distribution via anisotropic Debye shielding of a drifting ion. We consider 1D and 2D reduced versions of the problem, and compare the exact solutions of Wang and Blaskiewicz with Vlasov-Poisson and delta-f PIC simulations. We also consider interactions under non-ideal conditions where there is a density gradient in the electron distribution, and present simulations of the ion wake.
* V.N. Litvinenko and Y.S. Derbenev, Phys. Rev. Lett. 102, 114801 (2009).
 
 
MOP074 Simulations of a Single-Pass Through a Coherent Electron Cooler for 40 Gev/n Au+79 244
 
  • B.T. Schwartz, D.L. Bruhwiler, I.V. Pogorelov
    Tech-X, Boulder, Colorado, USA
  • Y. Hao, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
  • S. Reiche
    PSI, Villigen, Switzerland
 
  Funding: US DOE Office of Science, Office of Nuclear Physics, grant No.’s DE-FG02-08ER85182 and DE-FC02-07ER41499. NERSC resources were supported by the DOE Office of Science, contract No. DE-AC02-05CH11231.
Increasing the luminosity of ion beams in particle accelerators is critical for the advancement of nuclear and particle physics. Coherent electron cooling promises to cool high-energy hadron beams significantly faster than electron cooling or stochastic cooling. Here we show simulations of a single pass through a coherent electron cooler, which consists of a modulator, a free-electron laser, and a kicker. In the modulator the electron beam copropagates with the ion beam, which perturbs the electron beam density according to the ion positions. The FEL, which both amplifies and imparts wavelength-scale modulation on the electron beam. The strength of modulated electric fields determines how much they accelerate or decelerate the ions when electron beam recombines with the dispersion-shifted hadrons in the kicker region. From these field strengths we estimate the cooling time for a gold ion with a specific longitudinal velocity.
* Vladimir N. Litvinenko, Yaroslav S. Derbenev, Physical Review Letters 102, 114801 (2009)
 
 
MOP123 Colliding Pulse Injection Control in a Laser-Plasma Accelerator 325
 
  • C.G.R. Geddes, M. Chen, E. Esarey, W. Leemans, N.H. Matlis, D.E. Mittelberger, K. Nakamura, G.R.D. Plateau, C.B. Schroeder, C. Tóth
    LBNL, Berkeley, California, USA
  • D.L. Bruhwiler, J.R. Cary, E. Cormier-Michel, B.M. Cowan
    Tech-X, Boulder, Colorado, USA
 
  Funding: This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, NA-22, and in part by the Office of Science under Contract No. DE-AC02-05CH11231.
Control of injection into a high gradient laser-plasma accelerator is presented using the beat between two ’colliding’ laser pulses to kick electrons into the plasma wake accelerating phase. Stable intersection and performance over hours of operation were obtained using active pointing control. Dependence of injector performance on laser and plasma parameters were characterized in coordination with simulations. By scanning the intersection point of the lasers, the injection position was controlled, mapping the acceleration length. Laser modifications to extend acceleration length are discussed towards production of tunable stable electron bunches as needed for applications including Thomson gamma sources and high energy colliders.
 
 
MOP137 Predictive Design and Interpretation of Colliding Pulse Injected Laser Wakefield Experiments 349
 
  • E. Cormier-Michel, D.L. Bruhwiler, B.M. Cowan, V.H. Ranjibar
    Tech-X, Boulder, Colorado, USA
  • M. Chen, E. Esarey, C.G.R. Geddes, W. Leemans, C.B. Schroeder
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by DOE, NA-22, and Office of Science, HEP via the SciDAC-2 project ComPASS, grant No DE-FC02-07ER41499. Resources of NERSC were used (DOE contract No DE-AC02-05CH11231).
The use of colliding laser pulses to control the injection of plasma electrons into the plasma wake of a laser-plasma accelerator is a promising approach to obtain reproducible and tunable electron bunches with low energy spread and emittance. We present recent particle-in-cell simulations of colliding pulse injection for parameters relevant to ongoing experiments at LBNL. We perform parameter scans in order to determine the best conditions for the production of high quality electron bunches, and compare the results with experimental data. We also evaluate the effect of laser focusing in the plasma channel and of higher order laser mode components on the bunch properties.
 
 
MOP159 Ionization-Induced Trapping in Laser-Plasma Accelerators and Synchrotron Radiation from the Betatron Oscillation 394
 
  • M. Chen, E. Esarey, C.G.R. Geddes, W. Leemans, C.B. Schroeder
    LBNL, Berkeley, California, USA
  • D.L. Bruhwiler, E. Cormier-Michel
    Tech-X, Boulder, Colorado, USA
 
  Funding: This work is supported by the U.S. DOE Office of High Energy Physics under Contract No. DE-AC02-05CH11231, and NNSA, NA-22, and used the computational resources of NERSC.
Ionization injection into a laser wakefield accelerator is studied by multi-dimensional particle-in-cell (PIC) simulations. To obtain low energy spread beams we use a short region of gas mixture (H+N) near the start of the stage to trap electrons, while the remainder of the stage uses pure H and is injection-free. Effects of gas mix parameters, including concentration and length of the mixture region, on the final electron injection number and beam quality are studied. Two dimensional PIC simulations show the injected electron beam has filament structures in the plane perpendicular to the laser polarization direction in early time and this structure disappears later due to the betatron oscillation of the electrons in the wakefield. Synchrotron radiation from the accelerated electrons is calculated by a post processing code - Virtual Detector for Synchrotron Radiation (VDSR).
 
 
WEP254 Simulation of H Beam Chopping in a Solenoid-Based Low-Energy Beam Transport (LEBT) 1957
 
  • D.T. Abell, D.L. Bruhwiler, Y. Choi, S. Mahalingam, P. Stoltz
    Tech-X, Boulder, Colorado, USA
  • B. Han
    ORNL RAD, Oak Ridge, Tennessee, USA
  • M.P. Stockli
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This work is supported by the US DOE Office of Science, Office of Basic Energy Sciences, including grant No. DE-SC0000844.
The H- linac for the Spallation Neutron Source (SNS) includes an electrostatic low-energy beam transport (LEBT) subsystem. The ion source group at SNS is developing a solenoid-based LEBT, which will include MHz frequency chopping of the partly-neutralized, 65~keV, 60~mA H- beam. Particle-in-cell (PIC) simulations using the parallel VORPAL framework are being used to explore the possibility of beam instabilities caused by the cloud of neutralizing ions generated from the background gas, or by other dynamical processes that could increase the emittance of the H- beam before it enters the radio-frequency quadrupole (RFQ) accelerator.
 
 
THOBN3 Proof-of-Principle Experiment for FEL-based Coherent Electron Cooling 2064
 
  • V. Litvinenko, I. Ben-Zvi, J. Bengtsson, A.V. Fedotov, Y. Hao, D. Kayran, G.J. Mahler, W. Meng, T. Roser, B. Sheehy, R. Than, J.E. Tuozzolo, G. Wang, S.D. Webb, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, D.L. Bruhwiler, B.T. Schwartz
    Tech-X, Boulder, Colorado, USA
  • A. Hutton, G.A. Krafft, M. Poelker, R.A. Rimmer
    JLAB, Newport News, Virginia, USA
 
  Funding: This work is supported the U.S. Department of Energy
Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron-hadron and electron-hadron colliders*. In a CEC system, a hadron beam interacts with a cooling electron beam. A perturbation of the electron density caused by ions is amplified and fed back to the ions to reduce the energy spread and the emittance of the ion beam. To demonstrate the feasibility of CEC we propose a proof-of-principle experiment at RHIC using one of JLab’s SRF cryo-modules. In this paper, we describe the experimental setup for CeC installed into one of RHIC's interaction regions. We present results of analytical estimates and results of initial simulations of cooling a gold-ion beam at 40 GeV/u energy via CeC.
* Vladimir N. Litvinenko, Yaroslav S. Derbenev, Physical Review Letters 102, 114801
 
slides icon Slides THOBN3 [1.379 MB]