Author: Afanasev, A.
Paper Title Page
MOP036 Epicyclic Twin-Helix Ionization Cooling Simulations 163
 
  • A. Afanasev
    Hampton University, Hampton, Virginia, USA
  • Y.S. Derbenev, V.S. Morozov
    JLAB, Newport News, Virginia, USA
  • V. Ivanov, R.P. Johnson
    Muons, Inc, Batavia, USA
 
  Funding: Supported in part by DOE SBIR grant DE-SC0005589
Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. For the implementation of PIC, we earlier developed an epicyclic twin-helix channel with correlated behavior of the horizontal and vertical betatron motions and dispersion. We now insert absorber plates with short energy-recovering units located next to them at the appropriate locations in the twin-helix channel. We first demonstrate conventional ionization cooling in such a system with the optics uncorrelated. We then adjust the correlated optics state and induce a parametric resonance to study ionization cooling under the resonant condition.
 
 
THP025 A Cooled Generalized Multiple Target System to Create Positrons for a Compact Tunable Intense Gamma Ray Source 2169
 
  • C. Y. Yoshikawa, C.M. Ankenbrandt
    Muons, Inc, Batavia, USA
  • A. Afanasev
    Hampton University, Hampton, Virginia, USA
  • D.V. Neuffer
    Fermilab, Batavia, USA
 
  Funding: This work was funded by Pacific Northwest National Laboratory which is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.
A compact tunable gamma ray source has many potential uses in medical and industrial applications. One novel scheme to produce an intense beam of gammas relies on the ability to create a high flux of positrons, which are produced by an electron beam on a high Z target. We present an innovative system which allows for a nearly arbitrary targeting geometry that supports multiple targets, whose optimal design is allowed to be driven by the physics of the positron production processes, while naturally supporting cooling of the targets.
 
 
THP199 Raising Photoemission Efficiency with Surface Acoustic Waves 2492
 
  • A. Afanasev
    Hampton University, Hampton, Virginia, USA
  • R.P. Johnson
    Muons, Inc, Batavia, USA
 
  Funding: Supported in part by Muons, Inc.
Current and future synchrotron radiation light sources and free electron laser facilities are in need of improvements in Electron Gun Technology, especially regarding the cost and efficiency of photoinjectors. The generation of Surface Acoustic Waves (SAW) on piezoelectric substrates is known to produce strong piezoelectric fields that propagate on the surface of the material. These fields significantly reduce the recombination probability of electrons and holes which can result in enhanced quantum efficiency of photoemission. Additional advantages are provided by the mobility of charge carriers that can be controlled by SAW. It is expected that this novel feature will result in enhanced efficiency of photocathode operation, leading to the production of intense, low emittance electron bunches at a high repetition rate using laser excitation.
 
 
MOP050 EPIC Muon Cooling Simulations using COSY INFINITY 190
 
  • J.A. Maloney, B. Erdelyi
    Northern Illinois University, DeKalb, Illinois, USA
  • A. Afanasev, R.P. Johnson
    Muons, Inc, Batavia, USA
  • S.A. Bogacz, Y.S. Derbenev
    JLAB, Newport News, Virginia, USA
  • V.S. Morozov
    ODU, Norfolk, Virginia, USA
 
  Next generation magnet systems needed for cooling channels in both neutrino factories and muon colliders will be innovative and complicated. Designing, simulating and optimizing these systems is a challenge. Using COSY INFINITY, a differential algebra-based code, to simulate complicated elements can allow the computation and correction of a variety of higher order effects, such as spherical and chromatic aberrations, that are difficult to address with other simulation tools. As an example, a helical dipole magnet has been implemented and simulated, and the performance of an epicyclic parametric ionization cooling system for muons is studied and compared to simulations made using G4Beamline, a GEANT4 toolkit.  
 
WEP074 Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels 1615
 
  • J.A. Maloney, B. Erdelyi
    Northern Illinois University, DeKalb, Illinois, USA
  • A. Afanasev, R.P. Johnson
    Muons, Inc, Batavia, USA
  • Y.S. Derbenev
    JLAB, Newport News, Virginia, USA
  • V.S. Morozov
    ODU, Norfolk, Virginia, USA
 
  Funding: Supported in part by DOE SBIR grant DE-SC0005589
Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.