Paper | Title | Page |
---|---|---|
MOP023 | Present Status of RIKEN Heavy-Ion Linac | 112 |
|
||
Present status of the RIKEN heavy-ion linac (RILAC) will be reported, which has been used for the injector to the RIKEN RI-beam factory since 2006 as well as for the nuclear physics experiments on superheavy elements since 2002. An alternative injector to the RI-beam factory, consisting of a superconducting ECR ion source, an RFQ, and three DTLs, will be also discussed. The construction of the ion source will be completed in this year and the extraction test of the beams will be started from 2009. An RFQ linac, originally developed for the ion implantation*, was given to RIKEN through the courtesy of Kyoto University. Reconditioning of this RFQ is underway, which will be modified for the new injector in the near future. *H. Fujisawa: Nucl. Instrum. Methods A345, 23 (1994). |
||
WE204 | IH-DTL as a Compact Injector for a Heavy-Ion Medical Synchrotron | 715 |
|
||
An interdigital H-mode structure drift tube linac (IH-DTL) with alternating phase focusing (APF) has been developed downstream of a 4-vane type RFQ linac at the National Institute of Radiological Sciences as a compact injector for a heavy-ion medical synchrotron. The rf frequency of both linacs is 200 MHz, and the total length of the two linacs is less than 6 m. They can accelerate heavy ions having a charge to mass ratio of 1/3 up to 4 MeV/u. The accelerated current of 12C4+ is as high as 380 electric μA, and beam transmission through the APF IH-DTL is better than 96%. This compact injector-linac scheme might give a possible solution for a compact cancer therapy facility with heavy-ion beams. |
||
|