A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Schlitt, B.

Paper Title Page
MOP057 Linac Front-End Upgrade at the Cancer Therapy Facility HIT 208
 
  • M.T. Maier, W. Barth, A. Orzhekhovskaya, B. Schlitt, H. Vormann, S. Yaramyshev
    GSI, Darmstadt
  • R. Cee
    HIT, Heidelberg
 
 

A clinical facility for cancer therapy using energetic proton and ion beams (C, He and O) has been installed at the Radiologische Universitätsklinik in Heidelberg, Germany. It consists of two ECR ion sources, a 7 MeV/u linac injector, and a 6.5 Tm synchrotron to accelerate the ions to energies of 430 MeV/u. The linac comprises a 400 keV/u RFQ and a 7 MeV/u IH-DTL operating at 216.8 MHz and has been commissioned successfully in 2006. Yet the overall achieved transmission through the injector linac did not exceed 30% due to a mismatch of the beam at the RFQ entrance. Thus a detailed upgrade programme has been started to exchange the RFQ with a new radial matcher design, to correct the alignment and to optimize beam transport to the IH-DTL. The aim is to achieve a sufficient linac transmission above 60%. The new design of the RFQ has been finished in 2007 and the RFQ is currently in production. A test bench comprising a full ion source and LEBT setup to commission the RFQ in 2008 is under construction at Danfysik in Danemark. The current status of this upgrade programme will be reported in this contribution.

 
WE205 Commissioning and Operation of the Injector Linacs for HIT and CNAO 720
 
  • B. Schlitt
    GSI, Darmstadt
 
 

The Heidelberg Ion-Beam Therapy Centre (HIT) is the first dedicated clinical synchrotron facility for cancer therapy using energetic proton and ion beams (C, He and O) in Europe. The accelerator consists of a 7 MeV/u, 217 MHz injector linac and of a 430 MeV/u synchrotron. The installation and commissioning of the linac has been performed gradually in three steps for the ion sources and the LEBT, for the 400 keV/u RFQ, and for the 20 MV IH-type drift tube linac. The initial commissioning of the linac was finished successfully in December 2006, the commissioning of the synchrotron and of the high-energy beam lines with beam was finished for two fixed-beam treatment places in December 2007. Commissioning of the heavy-ion gantry is still going on. The results of the linac commissioning will be reported as well as the experience of more than one year of linac operation. To provide optimum conditions for patient treatment, an intensity upgrade programme has been initiated for the linac. A copy of the HIT linac is presently installed at the Centro Nazionale di Adroterapia Oncologica (CNAO) in Pavia, Italy. The status of the CNAO linac will be also reported.

 

slides icon

Slides

 
THP080 Elimination of Parasitic Oscillations in RF Tube Amplifier for High Power Application 981
 
  • E. Feldmeier
    HIT, Heidelberg
  • G. Hutter, B. Schlitt, W. Vinzenz
    GSI, Darmstadt
 
 

For the heavy ion therapy center HIT in Heidelberg a 1.6 MW power amplifier for 217 MHz was built to supply the 7 MeV/u IH cavity. The inherent parasitic oscillations of the RF tube increases rapidly the anode current until the system switches off. For the elimination of those parasitic oscillations ferrite material is used. The electro magnetic fields are simulated to find an optimal positioning of the ferrite material in the anode cavity such that only the parasitic oscillations are attenuated without affecting the fundamental mode.