A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Pasini, M.

Paper Title Page
MOP008 Development of a Cell-Coupled Drift Tube Linac (CCDTL) for Linac4 67
 
  • M. Vretenar, Y. Cuvet, G. De Michele, F. Gerigk, M. Pasini, S. Ramberger, R. Wegner
    CERN, Geneva
  • E. Kenzhbulatov, A. Kryuchkov, E. Rotov, A.G. Tribendis
    BINP SB RAS, Novosibirsk
  • M.Y. Naumenko
    RFNC-VNIITF, Snezhinsk, Chelyabinsk region
 
 

The 352 MHz CCDTL will accelerate the Linac4 beam from 50 to 102 MeV. It will be the first CCDTL used in a proton linac. Three short DTL tanks, each having two drift tubes, are connected by coupling cavities and form a chain of 5 resonators operating in the stable π/2 mode. The CCDTL section is made of 7 such chains, each fed by a 1.3 MW klystron. Focusing quadrupoles are placed between tanks, easing their alignment with respect to a conventional DTL thus making the structure less sensitive to manufacturing errors. In order to validate the design and to develop the production technology, two prototypes have been constructed and successfully tested. The first prototype, built at CERN, consists of two half-cavities and one coupling cell, whereas the second, with two full cavities and one coupling cell, was built at VNIITF and BINP in Russia in the frame of an R&D contract funded by the ISTC Organisation. Both prototypes have been tested at CERN slightly beyond their nominal power level, at the design duty cycle of 10%. In this paper we present the results of high-power tests, the results of the technological developments prior to production, and the final design of the CCDTL.

 
MOP028 A SC Upgrade for the REX-ISOLDE Accelerator at CERN 124
 
  • M. Pasini, S. Calatroni, N. Delruelle, M. Lindroos, V. Parma, T. Trilhe, D. Voulot, F.J.C. Wenander
    CERN, Geneva
  • R.M. Jones
    UMAN, Manchester
  • P.A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

The High Intensity and Energy ISOLDE (HIE-ISOLDE) proposal is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities with the objective of increasing the energy and the intensity of the delivered radioactive ion beam. For the energy increase a staged construction of a superconducting linac based on sputtered quarter wave cavities is foreseen downstream of the present normal conducting linac. A funded R&D program has been launched at the end of 2007 in order to prepare a full Technical Design Report covering all the issues of such a linac, including cavity prototyping and testing, cryomodule design, beam dynamics and beam diagnostics. We report here on the status and planning of the R&D activities for the SCREX-ISOLDE linac.

 

slides icon

Slides

 
MOP029 Beam Dynamics Studies for the SCREX-ISOLDE Linac at CERN 127
 
  • M. Pasini, D. Voulot
    CERN, Geneva
  • M.A. Fraser, R.M. Jones
    UMAN, Manchester
 
 

For the REX-ISOLDE upgrade a superconducting linac based on 101.28 MHz Quarter Wave Resonators (QWRs) is foreseen downstream the normal conducting (NC) linac. Currently the REX-ISOLDE linac can accelerate ions with a mass to charge ratio in the range of 3 < A/q < 4.5 and up to an energy of 3 MeV/u. The upgrade aims to reach a final beam minimum energy of 10 MeV/u for A/q=4.5 in two main stages. The first stage consists of installing two cryomodules loaded with 10 cavities able to reach 5.5 MeV/u at the end of the present linac and the second consists of replacing part of the existing NC linac and adding further cryomodules. We report here on a beam dynamics study of the accelerator for the two installation stages and the transport line to the experimental station.

 
TUP083 Diagnostics and Measurement Strategy for the CERN Linac 4 591
 
  • K. Hanke, G. Bellodi, J.-B. Lallement, A.M. Lombardi, B. Mikulec, M. Pasini, U. Raich, E.Zh. Sargsyan
    CERN, Geneva
  • H. Hori
    MPQ, Garching, Munich
 
 

Linac 4 is a 160 MeV H- linac which will become the new injector for CERN's proton accelerator chain. The linac will consist of 4 different rf structures, namely RFQ, DTL, CCDTL and PIMS running at 352.2 MHz with 2 Hz repetition rate and 0.4 ms pulse length. A chopper line ensures clean injection into the PS Booster. The combination of high frequency and a high-current, low-emittance beam calls for a compact design where minimum space is left for diagnostics. On the other hand, diagnostics is needed for setting up and tuning of the machine during both commissioning and operation. A measurement strategy and the corresponding choice of the diagnostic devices and their specific use in Linac4 are discussed in this paper.

 
THP022 SC Nb Sputtered QWRs for the REX-ISOLDE Accelerator at CERN: Prototype Design and Manufacturing 827
 
  • M. Pasini, S. Calatroni, L.M.A. Ferreira, D. Ramos, T. Tardy, F. Thierry, T. Trilhe
    CERN, Geneva
 
 

The HIE-ISOLDE activity aims at the construction of a superconducting linac based on 101.28 MHz Nb sputtered Quarter Wave Resonators (QWRs), which will be installed downstream the present REX-ISOLDE linac. The present design considers two basic geometries of the cavities (geometric β0 = 6.26% and 10.84%) for which a mechanical, chemical treatment and Nb coating design study has been performed. We report here on the status of the prototype cavity and sputtering tests.

 
THP120 Concept Design Studies of the REX-ISOLDE Cryomodules at CERN 1081
 
  • V. Parma, S. Calatroni, N. Delruelle, J. Hansen, C. Maglioni, M. Modena, M. Pasini, T. Trilhe
    CERN, Geneva
  • S.M. Pattalwar
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

The High Intensity and Energy (HIE) proposal plans a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN, with the objective of substantially increasing the energy and the intensity of the delivered radioactive ion beams. In the frame of this upgrade activity, a superconducting linac, based on Nb sputtered Quarter Wave Resonators (QWRs) is proposed to be installed downstream of the present normal conducting machine. The present design of the accelerator lattice features housing of five high-beta cavities (β=10.6%) and a superconducting solenoid in a common cryomodule. In most of the existing low-energy heavy-ion installations worldwide, insulation and beam vacuum are in common, with the risk of cavity surface contamination in case of accidental leak to the cryostat vessel. Following a concept study, we report in this paper on three design options, namely cryomodules with common vacuum, with separate or with hybrid vacuum systems (the latter having a low conductance between insulation and beam vacuum) and compare them in terms of technical complexity, performance, reliability and maintainability.