A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Paparella, R.

Paper Title Page
THP018 Successful Qualification of the Coaxial Blade Tuner 818
 
  • R. Paparella, A. Bosotti, C. Pagani, N. Panzeri
    INFN/LASA, Segrate (MI)
  • C. Albrecht, R. Lange, L. Lilje
    DESY, Hamburg
  • J. Knobloch, O. Kugeler, A. Neumann
    BESSY GmbH, Berlin
 
 

Cavity tuners are needed to precisely tune the narrow-band resonant frequency of superconducting cavities. The Blade Tuner presented is installed coaxially to the cavity and changes the resonator frequency by varying its length. Piezoceramic actuators add dynamic tuning capabilities, allowing fast compensation of main dynamic instabilities as Lorentz Forces, under pulsed operations, and microphonic noise. A prototype piezo Blade Tuner has been assembled on a TESLA cavity and extensively cold tested inside the horizontal cryostats CHECHIA (DESY) and HoBiCaT (BESSY). Then, as suggested by results, a few minor modifications have been implemented thus achieving the current Blade Tuner design. The introduction of thicker blades re-distributed along the circumference allows to increase its stiffness and fulfill European and American pressure vessel codes, while ensuring requested performances and cost. The paper will present the successful characterization tests performed on the prototype, the extensive mechanical analyses made to validate the final model and the results from qualification tests of first revised Blade Tuner produced, to be installed in the second module of ILCTA at FNAL.

 
MOP077 Beam Dynamics Studies on the EURISOL Driver Accelerator 257
 
  • A. Facco, A.I. Balabin, R. Paparella, D. Zenere
    INFN/LNL, Legnaro, Padova
  • D. Berkovits, J. Rodnizki
    Soreq NRC, Yavne
  • J.-L. Biarrotte, S. Bousson, A. Ponton
    IPN, Orsay
  • R.D. Duperrier, D. Uriot
    CEA, Gif-sur-Yvette
  • V. Zvyagintsev
    TRIUMF, Vancouver
 
 

Funding: We acknowledge the financial support of the European Community under the FP6 "Research Infrastructure Action-Structuring the European Research Area" EURISOL DS Project Contract No. 515768 RIDS.
A 1 GeV, 5 mA cw superconducting proton/H- linac, with the capability of supplying cw primary beam to up to four targets simultaneously by means of a new beam splitting scheme, is under study in the framework of the EURISOL DS project which aims to produce an engineering-oriented design of a next generation European Radioactive beam facility. The EURISOL driver accelerator would be able to accelerate also a 100 muA 3He beam up to 2 GeV, and a 5 mA deuteron beam up to 200 MeV. The linac characteristics and the status of the beam dynamics studies will be presented.