A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Neumann, A.

Paper Title Page
TUP022 RF Control and Longitudinal Beam Stability in Energy Recovery Linacs 440
 
  • A. Neumann, M. Abo-Bakr, J. Knobloch
    BESSY GmbH, Berlin
 
 

Funding: Work partially funded by the European Commission in the Sixth Framework Program, contract no. 011935 EUROFEL-DS5, BMBF and Land Berlin.
Most concepts for next generation light sources base on linear accelerators (linac) due to their excellent beam properties. In case of high electron energies and extreme average currents Energy Recovery Linacs (ERL) are mandatory. In this paper we investigate the rf field stability in a generic superconducting, cw operated ERL. By using rf control cavity simulations and longitudinal beam dynamics the influence of rf field stability on the energy recovery process is analyzed. Since the ERL aims for a small net beam loading cavities are operated at a high loaded quality factor. Therefore they are operated at a low bandwidth and are very susceptible to microphonics detuning. We considered the field stability under the influence of limited rf power, mechanical cavity detuning, varying beamloading, synchronization deviations and varying bunch parameters at injection into the linac. The resulting temporal and energy jitter at the linac end will be transformed in the return arc and leads to rf phase deviations on the return path. Implications of varying beam loading on the ERL performance are examined.

 
THP010 Influence of Piezo-Hysteresis and Resolution on Cavity Tuning 795
 
  • O. Kugeler, W. Anders, J. Knobloch, A. Neumann
    BESSY GmbH, Berlin
 
 

Funding: Work partially funded by the EU Commission in the sixth framework programme, contract no 011935 EURO-FEL-DS5, BMBF and Land Berlin.
All mechanical tuning systems are subject to hysteresis effects: For coarse tuning with a stepper motor, the exercised forces lead to a visco-elastic deformation of the tuner body. In piezo-based fine tuning, even if the smaller deformations of tuner and cavity can be regarded as fully elastic, the piezo-actuators themselves suffer from remanent polarization effects. The extent of these nonlinearities has been measured in three different tuning systems (Saclay I, Saclay II and Blade Tuner) utilizing high-voltage as well as low-voltage piezo actuators. An estimate of the resulting tuner-resolution and performance degradation with respect to microphonics compensation is given. Experiments were performed in the HoBiCaT facility at BESSY.

 
THP018 Successful Qualification of the Coaxial Blade Tuner 818
 
  • R. Paparella, A. Bosotti, C. Pagani, N. Panzeri
    INFN/LASA, Segrate (MI)
  • C. Albrecht, R. Lange, L. Lilje
    DESY, Hamburg
  • J. Knobloch, O. Kugeler, A. Neumann
    BESSY GmbH, Berlin
 
 

Cavity tuners are needed to precisely tune the narrow-band resonant frequency of superconducting cavities. The Blade Tuner presented is installed coaxially to the cavity and changes the resonator frequency by varying its length. Piezoceramic actuators add dynamic tuning capabilities, allowing fast compensation of main dynamic instabilities as Lorentz Forces, under pulsed operations, and microphonic noise. A prototype piezo Blade Tuner has been assembled on a TESLA cavity and extensively cold tested inside the horizontal cryostats CHECHIA (DESY) and HoBiCaT (BESSY). Then, as suggested by results, a few minor modifications have been implemented thus achieving the current Blade Tuner design. The introduction of thicker blades re-distributed along the circumference allows to increase its stiffness and fulfill European and American pressure vessel codes, while ensuring requested performances and cost. The paper will present the successful characterization tests performed on the prototype, the extensive mechanical analyses made to validate the final model and the results from qualification tests of first revised Blade Tuner produced, to be installed in the second module of ILCTA at FNAL.