A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kobets, V.

Paper Title Page
MOP027 Heavy Ion Injector for NICA/MPD Project 121
 
  • G.V. Trubnikov, E.D. Donets, E.E. Donets, A. Govorov, V. Kobets, I.N. Meshkov, V. Monchinsky, A.O. Sidorin
    JINR, Dubna, Moscow Region
  • O.K. Belyaev, Yu.A. Budanov, A. Maltsev, I.A. Zvonarev
    IHEP Protvino, Protvino, Moscow Region
 
 

Goal of the NICA/MPD project under realization at JINR is to start in the coming 5-7 years an experimental study of hot and dense strongly interacting QCD matter and search for possible manifestation of signs of the mixed phase and critical endpoint in heavy ion collisions. The Nuclotron-based Ion Collider fAcility (NICA) and the Multi Purpose Detector (MPD) are proposed for these purposes. The NICA collider is aimed to provide experiment with heavy ions like Au, Pb or U at energy up to 3.5 x 3.5 GeV/u with average luminosity of 1027 cm-2s-1. The existing Nuclotron injection complex consists of HV fore-injector and Alvarez-type linac LU-20. The LU-20 accelerates the protons up to the energy of 20 MeV and ions at Z/A=0.33 up to the energy of 5 MeV/u. New injector designed for efficient operation of the NICA facility is based on Electron String Ion Source providing short (< 10 ns) and intensive (up to 10 mA) pulses of U32+ ions, one section of RFQ and four sections of RFQ Drift Tube Linac accelerating the ions at Z/A=0.12 up to 6 MeV/u of the kinetic energy. General parameters of the injector are discussed.

 
TUP039 Status of the LINAC-800 Construction at JINR 480
 
  • G.V. Trubnikov, N. Balalykin, A.G. Kobets, V. Kobets, I.N. Meshkov, V. Minashkin, G. Shirkov, G.I. Sidorov
    JINR, Dubna, Moscow Region
  • V. Shabratov
    JINR/LHE, Moscow
 
 

800 MeV electron linac (LINAC-800) is under construction at JINR. It will be used as a driver for Volume FEL and as a test bench for commissioning of elements of the ILC. Presently the electron injector is commissioned and the electron beam of 50 keV of the energy at current of about 15 mA was obtained. The results of the injector operation at nominal parameters (400 keV, 300 mA) and commissioning of the first accelerating section at 20 MeV are discussed.